IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47446-7.html
   My bibliography  Save this article

Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformations

Author

Listed:
  • Qing-Xia Chen

    (University of Science and Technology of China)

  • Yu-Yang Lu

    (University of Science and Technology of China)

  • Yang Yang

    (University of Science and Technology of China)

  • Li-Ge Chang

    (University of Science and Technology of China)

  • Yi Li

    (University of Science and Technology of China)

  • Yuan Yang

    (University of Science and Technology of China)

  • Zhen He

    (University of Science and Technology of China)

  • Jian-Wei Liu

    (University of Science and Technology of China)

  • Yong Ni

    (University of Science and Technology of China)

  • Shu-Hong Yu

    (University of Science and Technology of China)

Abstract

Investigations of one-dimensional segmented heteronanostructures (1D-SHs) have recently attracted much attention due to their potentials for applications resulting from their structure and synergistic effects between compositions and interfaces. Unfortunately, developing a simple, versatile and controlled synthetic method to fabricate 1D-SHs is still a challenge. Here we demonstrate a stress-induced axial ordering mechanism to describe the synthesis of 1D-SHs by a general under-stoichiometric reaction strategy. Using the continuum phase-field simulations, we elaborate a three-stage evolution process of the regular segment alternations. This strategy, accompanied by easy chemical post-transformations, enables to synthesize 25 1D-SHs, including 17 nanowire-nanowire and 8 nanowire-nanotube nanostructures with 13 elements (Ag, Te, Cu, Pt, Pb, Cd, Sb, Se, Bi, Rh, Ir, Ru, Zn) involved. This ordering evolution-driven synthesis will help to investigate the ordering reconstruction and potential applications of 1D-SHs.

Suggested Citation

  • Qing-Xia Chen & Yu-Yang Lu & Yang Yang & Li-Ge Chang & Yi Li & Yuan Yang & Zhen He & Jian-Wei Liu & Yong Ni & Shu-Hong Yu, 2024. "Stress-induced ordering evolution of 1D segmented heteronanostructures and their chemical post-transformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47446-7
    DOI: 10.1038/s41467-024-47446-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47446-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47446-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Siqi Lin & Wen Li & Zhiwei Chen & Jiawen Shen & Binghui Ge & Yanzhong Pei, 2016. "Tellurium as a high-performance elemental thermoelectric," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    2. Yadong Yin & A. Paul Alivisatos, 2005. "Colloidal nanocrystal synthesis and the organic–inorganic interface," Nature, Nature, vol. 437(7059), pages 664-670, September.
    3. Mark S. Gudiksen & Lincoln J. Lauhon & Jianfang Wang & David C. Smith & Charles M. Lieber, 2002. "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature, Nature, vol. 415(6872), pages 617-620, February.
    4. Yi Li & Tao-Tao Zhuang & Fengjia Fan & Oleksandr Voznyy & Mikhail Askerka & Haiming Zhu & Liang Wu & Guo-Qiang Liu & Yun-Xiang Pan & Edward H. Sargent & Shu-Hong Yu, 2018. "Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. Delia J. Milliron & Steven M. Hughes & Yi Cui & Liberato Manna & Jingbo Li & Lin-Wang Wang & A. Paul Alivisatos, 2004. "Colloidal nanocrystal heterostructures with linear and branched topology," Nature, Nature, vol. 430(6996), pages 190-195, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linlin Li & Shufang Zhao & Wenhao Ran & Zhexin Li & Yongxu Yan & Bowen Zhong & Zheng Lou & Lili Wang & Guozhen Shen, 2022. "Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yanping Chen & Yu Yao & Wantong Zhao & Lifeng Wang & Haitao Li & Jiangwei Zhang & Baojun Wang & Yi Jia & Riguang Zhang & Yan Yu & Jian Liu, 2023. "Precise solid-phase synthesis of CoFe@FeOx nanoparticles for efficient polysulfide regulation in lithium/sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Hamed Almohammadi & Sandra Martinek & Ye Yuan & Peter Fischer & Raffaele Mezzenga, 2023. "Disentangling kinetics from thermodynamics in heterogeneous colloidal systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kaja Bilińska & Dominika Goles & Maciej J. Winiarski, 2023. "A theoretical investigation of 18-electron half-Heusler tellurides in terms of potential thermoelectric value," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-8, October.
    7. Michele Ghini & Nicola Curreli & Matteo B. Lodi & Nicolò Petrini & Mengjiao Wang & Mirko Prato & Alessandro Fanti & Liberato Manna & Ilka Kriegel, 2022. "Control of electronic band profiles through depletion layer engineering in core–shell nanocrystals," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yaru Gong & Wei Dou & Bochen Lu & Xuemei Zhang & He Zhu & Pan Ying & Qingtang Zhang & Yuqi Liu & Yanan Li & Xinqi Huang & Muhammad Faisal Iqbal & Shihua Zhang & Di Li & Yongsheng Zhang & Haijun Wu & G, 2024. "Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Mingjin Dai & Chongwu Wang & Bo Qiang & Yuhao Jin & Ming Ye & Fakun Wang & Fangyuan Sun & Xuran Zhang & Yu Luo & Qi Jie Wang, 2023. "Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Kenji Shibata & Masaki Yoshida & Kazuhiko Hirakawa & Tomohiro Otsuka & Satria Zulkarnaen Bisri & Yoshihiro Iwasa, 2023. "Single PbS colloidal quantum dot transistors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Xiaohua Liu & Yongjing Lin & Sa Zhou & Stafford Sheehan & Dunwei Wang, 2010. "Complex Nanostructures: Synthesis and Energetic Applications," Energies, MDPI, vol. 3(3), pages 1-16, February.
    12. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47446-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.