IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38939-y.html
   My bibliography  Save this article

Collective excitations of a bound-in-the-continuum condensate

Author

Listed:
  • Anna Grudinina

    (National Research Nuclear University MEPhI (Moscow Engineering Physics Institute))

  • Maria Efthymiou-Tsironi

    (Università del Salento
    Institute of Nanotechnology)

  • Vincenzo Ardizzone

    (Università del Salento
    Institute of Nanotechnology)

  • Fabrizio Riminucci

    (Lawrence Berkeley National Laboratory)

  • Milena De Giorgi

    (Institute of Nanotechnology)

  • Dimitris Trypogeorgos

    (Institute of Nanotechnology)

  • Kirk Baldwin

    (Princeton University)

  • Loren Pfeiffer

    (Princeton University)

  • Dario Ballarini

    (Institute of Nanotechnology)

  • Daniele Sanvitto

    (Institute of Nanotechnology)

  • Nina Voronova

    (National Research Nuclear University MEPhI (Moscow Engineering Physics Institute))

Abstract

Spectra of low-lying elementary excitations are critical to characterize properties of bosonic quantum fluids. Usually these spectra are difficult to observe, due to low occupation of non-condensate states compared to the ground state. Recently, low-threshold Bose-Einstein condensation was realised in a symmetry-protected bound state in the continuum, at a saddle point, thanks to coupling of this electromagnetic resonance to semiconductor excitons. While it has opened the door to long-living polariton condensates, their intrinsic collective properties are still unexplored. Here we unveil the peculiar features of the Bogoliubov spectrum of excitations in this system. Thanks to the dark nature of the bound-in-the-continuum state, collective excitations lying directly above the condensate become observable in enhanced detail. We reveal interesting aspects, such as energy-flat parts of the dispersion characterized by two parallel stripes in photoluminescence pattern, pronounced linearization at non-zero momenta in one of the directions, and a strongly anisotropic velocity of sound.

Suggested Citation

  • Anna Grudinina & Maria Efthymiou-Tsironi & Vincenzo Ardizzone & Fabrizio Riminucci & Milena De Giorgi & Dimitris Trypogeorgos & Kirk Baldwin & Loren Pfeiffer & Dario Ballarini & Daniele Sanvitto & Nin, 2023. "Collective excitations of a bound-in-the-continuum condensate," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38939-y
    DOI: 10.1038/s41467-023-38939-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38939-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38939-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Kasprzak & M. Richard & S. Kundermann & A. Baas & P. Jeambrun & J. M. J. Keeling & F. M. Marchetti & M. H. Szymańska & R. André & J. L. Staehli & V. Savona & P. B. Littlewood & B. Deveaud & Le Si D, 2006. "Bose–Einstein condensation of exciton polaritons," Nature, Nature, vol. 443(7110), pages 409-414, September.
    2. Maciej Pieczarka & Eliezer Estrecho & Maryam Boozarjmehr & Olivier Bleu & Mark Steger & Kenneth West & Loren N. Pfeiffer & David W. Snoke & Jesper Levinsen & Meera M. Parish & Andrew G. Truscott & Ele, 2020. "Observation of quantum depletion in a non-equilibrium exciton–polariton condensate," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. V. Ardizzone & F. Riminucci & S. Zanotti & A. Gianfrate & M. Efthymiou-Tsironi & D. G. Suàrez-Forero & F. Todisco & M. Giorgi & D. Trypogeorgos & G. Gigli & K. Baldwin & L. Pfeiffer & D. Ballarini & H, 2022. "Polariton Bose–Einstein condensate from a bound state in the continuum," Nature, Nature, vol. 605(7910), pages 447-452, May.
    4. J. -M. Ménard & C. Poellmann & M. Porer & U. Leierseder & E. Galopin & A. Lemaître & A. Amo & J. Bloch & R. Huber, 2014. "Revealing the dark side of a bright exciton–polariton condensate," Nature Communications, Nature, vol. 5(1), pages 1-5, December.
    5. Dario Ballarini & Davide Caputo & Galbadrakh Dagvadorj & Richard Juggins & Milena De Giorgi & Lorenzo Dominici & Kenneth West & Loren N. Pfeiffer & Giuseppe Gigli & Marzena H. Szymańska & Daniele Sanv, 2020. "Directional Goldstone waves in polariton condensates close to equilibrium," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Petr Stepanov & Ivan Amelio & Jean-Guy Rousset & Jacqueline Bloch & Aristide Lemaître & Alberto Amo & Anna Minguzzi & Iacopo Carusotto & Maxime Richard, 2019. "Dispersion relation of the collective excitations in a resonantly driven polariton fluid," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. Bo Zhen & Chia Wei Hsu & Yuichi Igarashi & Ling Lu & Ido Kaminer & Adi Pick & Song-Liang Chua & John D. Joannopoulos & Marin Soljačić, 2015. "Spawning rings of exceptional points out of Dirac cones," Nature, Nature, vol. 525(7569), pages 354-358, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Peng & Renjie Tao & Louis Haeberlé & Quanwei Li & Dafei Jin & Graham R. Fleming & Stéphane Kéna-Cohen & Xiang Zhang & Wei Bao, 2022. "Room-temperature polariton quantum fluids in halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Lang Feng & Stefan Natu & Victoria Som de Cerff Edmonds & John J. Valenza, 2022. "Multiphase flow detection with photonic crystals and deep learning," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. M. Wurdack & T. Yun & M. Katzer & A. G. Truscott & A. Knorr & M. Selig & E. A. Ostrovskaya & E. Estrecho, 2023. "Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Takuya Inoue & Masahiro Yoshida & John Gelleta & Koki Izumi & Keisuke Yoshida & Kenji Ishizaki & Menaka Zoysa & Susumu Noda, 2022. "General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Charalambos Louca & Armando Genco & Salvatore Chiavazzo & Thomas P. Lyons & Sam Randerson & Chiara Trovatello & Peter Claronino & Rahul Jayaprakash & Xuerong Hu & James Howarth & Kenji Watanabe & Taka, 2023. "Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Hangyong Shan & Lukas Lackner & Bo Han & Evgeny Sedov & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Johannes Beierlein & Nils Kunte & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Tak, 2021. "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Yusuke Morita & Kosuke Yoshioka & Makoto Kuwata-Gonokami, 2022. "Observation of Bose-Einstein condensates of excitons in a bulk semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    17. Yao Li & Xuekai Ma & Xiaokun Zhai & Meini Gao & Haitao Dai & Stefan Schumacher & Tingge Gao, 2022. "Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    18. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Ke Wei & Qirui Liu & Yuxiang Tang & Yingqian Ye & Zhongjie Xu & Tian Jiang, 2023. "Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38939-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.