IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38595-2.html
   My bibliography  Save this article

Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis

Author

Listed:
  • Tyler H. Ogunmowo

    (Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University)

  • Haoyuan Jing

    (Johns Hopkins University
    Johns Hopkins University)

  • Sumana Raychaudhuri

    (Johns Hopkins University
    Johns Hopkins University)

  • Grant F. Kusick

    (Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University)

  • Yuuta Imoto

    (Johns Hopkins University
    Johns Hopkins University)

  • Shuo Li

    (Johns Hopkins University
    Johns Hopkins University
    Stanford University)

  • Kie Itoh

    (Johns Hopkins University
    Johns Hopkins University)

  • Ye Ma

    (Johns Hopkins University)

  • Haani Jafri

    (Thomas Jefferson University)

  • Matthew B. Dalva

    (Thomas Jefferson University
    Tulane University)

  • Edwin R. Chapman

    (University of Wisconsin-Madison
    Howard Hughes Medical Institute)

  • Taekjip Ha

    (Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University
    Howard Hughes Medical Institute)

  • Shigeki Watanabe

    (Johns Hopkins University
    Johns Hopkins University
    Johns Hopkins University)

  • Jian Liu

    (Johns Hopkins University
    Johns Hopkins University)

Abstract

Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.

Suggested Citation

  • Tyler H. Ogunmowo & Haoyuan Jing & Sumana Raychaudhuri & Grant F. Kusick & Yuuta Imoto & Shuo Li & Kie Itoh & Ye Ma & Haani Jafri & Matthew B. Dalva & Edwin R. Chapman & Taekjip Ha & Shigeki Watanabe , 2023. "Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38595-2
    DOI: 10.1038/s41467-023-38595-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38595-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38595-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shigeki Watanabe & Thorsten Trimbuch & Marcial Camacho-Pérez & Benjamin R. Rost & Bettina Brokowski & Berit Söhl-Kielczynski & Annegret Felies & M. Wayne Davis & Christian Rosenmund & Erik M. Jorgense, 2014. "Clathrin regenerates synaptic vesicles from endosomes," Nature, Nature, vol. 515(7526), pages 228-233, November.
    2. Timothy Elston & Hongyun Wang & George Oster, 1998. "Energy transduction in ATP synthase," Nature, Nature, vol. 391(6666), pages 510-513, January.
    3. Hongyun Wang & George Oster, 1998. "Energy transduction in the F1 motor of ATP synthase," Nature, Nature, vol. 396(6708), pages 279-282, November.
    4. Shigeki Watanabe & Benjamin R. Rost & Marcial Camacho-Pérez & M. Wayne Davis & Berit Söhl-Kielczynski & Christian Rosenmund & Erik M. Jorgensen, 2013. "Ultrafast endocytosis at mouse hippocampal synapses," Nature, Nature, vol. 504(7479), pages 242-247, December.
    5. Zheng Shi & Tobias Baumgart, 2015. "Membrane tension and peripheral protein density mediate membrane shape transitions," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    6. Andrew R. Harris & Pamela Jreij & Brian Belardi & Aaron M. Joffe & Andreas R. Bausch & Daniel A. Fletcher, 2020. "Biased localization of actin binding proteins by actin filament conformation," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wonchul Shin & Ben Zucker & Nidhi Kundu & Sung Hoon Lee & Bo Shi & Chung Yu Chan & Xiaoli Guo & Jonathan T. Harrison & Jaymie Moore Turechek & Jenny E. Hinshaw & Michael M. Kozlov & Ling-Gang Wu, 2022. "Molecular mechanics underlying flat-to-round membrane budding in live secretory cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    3. Ling-Gang Wu & Chung Yu Chan, 2024. "Membrane transformations of fusion and budding," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. J. Kishikawa & A. Nakanishi & A. Nakano & S. Saeki & A. Furuta & T. Kato & K. Mistuoka & K. Yokoyama, 2022. "Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Hao, Qing-Yi & Jiang, Rui & Hu, Mao-Bin & Wu, Chao-Yun & Guo, Ning, 2022. "Analytical investigation on totally asymmetric simple exclusion process with Langmuir kinetics and a parallel update with two sub-steps," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Seth Lichter & Benjamin Rafferty & Zachary Flohr & Ashlie Martini, 2012. "Protein High-Force Pulling Simulations Yield Low-Force Results," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.
    7. Dennis Vettkötter & Martin Schneider & Brady D. Goulden & Holger Dill & Jana Liewald & Sandra Zeiler & Julia Guldan & Yilmaz Arda Ateş & Shigeki Watanabe & Alexander Gottschalk, 2022. "Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Kazuya Tsujita & Reiko Satow & Shinobu Asada & Yoshikazu Nakamura & Luis Arnes & Keisuke Sako & Yasuyuki Fujita & Kiyoko Fukami & Toshiki Itoh, 2021. "Homeostatic membrane tension constrains cancer cell dissemination by counteracting BAR protein assembly," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Katherine Bonnycastle & Katharine L. Dobson & Eva-Maria Blumrich & Akshada Gajbhiye & Elizabeth C. Davenport & Marie Pronot & Moritz Steinruecke & Matthias Trost & Alfredo Gonzalez-Sulser & Michael A., 2023. "Reversal of cell, circuit and seizure phenotypes in a mouse model of DNM1 epileptic encephalopathy," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Qianqian Ma & Wahyu Surya & Danxia He & Hanmeng Yang & Xiao Han & Mui Hoon Nai & Chwee Teck Lim & Jaume Torres & Yansong Miao, 2024. "Spa2 remodels ADP-actin via molecular condensation under glucose starvation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Anabel-Lise Le Roux & Caterina Tozzi & Nikhil Walani & Xarxa Quiroga & Dobryna Zalvidea & Xavier Trepat & Margarita Staykova & Marino Arroyo & Pere Roca-Cusachs, 2021. "Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38595-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.