IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55270-2.html
   My bibliography  Save this article

Mechanistic evaluation of enhanced graphene toxicity to Bacillus induced by humic acid adsorption

Author

Listed:
  • Xuejiao Zhang

    (Guangdong Academy of Sciences
    Chinese Academy of Sciences)

  • Jin Zeng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jason C. White

    (The Connecticut Agricultural Experiment Station)

  • Fangbai Li

    (Guangdong Academy of Sciences)

  • Zhiqiang Xiong

    (Soochow University)

  • Siyu Zhang

    (Guangdong Academy of Sciences
    Chinese Academy of Sciences)

  • Yuze Xu

    (Guangdong Academy of Sciences)

  • Jingjing Yang

    (Guangdong Academy of Sciences)

  • Weihao Tang

    (Guangdong Academy of Sciences)

  • Qing Zhao

    (Guangdong Academy of Sciences
    Ltd.)

  • Fengchang Wu

    (Chinese Research Academy of Environmental Sciences)

  • Baoshan Xing

    (University of Massachusetts)

Abstract

The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus. Contrary to previous data, GNSs-HA exhibits greater toxicity compared to GNSs. Multi-omics combined with sensitive bioassays and electrochemical methods reveals GNSs disrupt oxidative phosphorylation by causing physical membrane damage. This leads to the accumulation of intracellular reactive oxygen species and inhibition of ATP production, subsequently suppressing synthetic and metabolic processes and ultimately causing bacterial death. Conversely, GNSs-HA directly extracts electrons from bacteria and oxidized biomolecules due to HA-improved electron transfer. This finding suggests that the HA corona does not always mitigate the toxicity of nanoparticles, thereby introducing uncertainty over the interaction between environmental corona and nanoparticles during ecological risk evaluation.

Suggested Citation

  • Xuejiao Zhang & Jin Zeng & Jason C. White & Fangbai Li & Zhiqiang Xiong & Siyu Zhang & Yuze Xu & Jingjing Yang & Weihao Tang & Qing Zhao & Fengchang Wu & Baoshan Xing, 2025. "Mechanistic evaluation of enhanced graphene toxicity to Bacillus induced by humic acid adsorption," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55270-2
    DOI: 10.1038/s41467-024-55270-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55270-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55270-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy Elston & Hongyun Wang & George Oster, 1998. "Energy transduction in ATP synthase," Nature, Nature, vol. 391(6666), pages 510-513, January.
    2. Hongyun Wang & George Oster, 1998. "Energy transduction in the F1 motor of ATP synthase," Nature, Nature, vol. 396(6708), pages 279-282, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    2. J. Kishikawa & A. Nakanishi & A. Nakano & S. Saeki & A. Furuta & T. Kato & K. Mistuoka & K. Yokoyama, 2022. "Structural snapshots of V/A-ATPase reveal the rotary catalytic mechanism of rotary ATPases," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Hao, Qing-Yi & Jiang, Rui & Hu, Mao-Bin & Wu, Chao-Yun & Guo, Ning, 2022. "Analytical investigation on totally asymmetric simple exclusion process with Langmuir kinetics and a parallel update with two sub-steps," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Tyler H. Ogunmowo & Haoyuan Jing & Sumana Raychaudhuri & Grant F. Kusick & Yuuta Imoto & Shuo Li & Kie Itoh & Ye Ma & Haani Jafri & Matthew B. Dalva & Edwin R. Chapman & Taekjip Ha & Shigeki Watanabe , 2023. "Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Seth Lichter & Benjamin Rafferty & Zachary Flohr & Ashlie Martini, 2012. "Protein High-Force Pulling Simulations Yield Low-Force Results," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-10, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55270-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.