IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45339-3.html
   My bibliography  Save this article

Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing

Author

Listed:
  • Wai Tuck Soh

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Hanna P. Roetschke

    (Max-Planck-Institute for Multidisciplinary Sciences
    King’s College London
    Francis Crick Institute)

  • John A. Cormican

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Bei Fang Teo

    (King’s College London
    Francis Crick Institute
    National University of Singapore)

  • Nyet Cheng Chiam

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Monika Raabe

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Ralf Pflanz

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Fabian Henneberg

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Stefan Becker

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Ashwin Chari

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Haiyan Liu

    (National University of Singapore)

  • Henning Urlaub

    (Max-Planck-Institute for Multidisciplinary Sciences
    University Medical Center Göttingen)

  • Juliane Liepe

    (Max-Planck-Institute for Multidisciplinary Sciences)

  • Michele Mishto

    (King’s College London
    Francis Crick Institute)

Abstract

If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow—and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.

Suggested Citation

  • Wai Tuck Soh & Hanna P. Roetschke & John A. Cormican & Bei Fang Teo & Nyet Cheng Chiam & Monika Raabe & Ralf Pflanz & Fabian Henneberg & Stefan Becker & Ashwin Chari & Haiyan Liu & Henning Urlaub & Ju, 2024. "Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45339-3
    DOI: 10.1038/s41467-024-45339-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45339-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45339-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ken-ichi Hanada & Jonathan W. Yewdell & James C. Yang, 2004. "Immune recognition of a human renal cancer antigen through post-translational protein splicing," Nature, Nature, vol. 427(6971), pages 252-256, January.
    2. Amy M. Ruschak & Tomasz L. Religa & Sarah Breuer & Susanne Witt & Lewis E. Kay, 2010. "The proteasome antechamber maintains substrates in an unfolded state," Nature, Nature, vol. 467(7317), pages 868-871, October.
    3. Indrajit Sahu & Sachitanand M. Mali & Prasad Sulkshane & Cong Xu & Andrey Rozenberg & Roni Morag & Manisha Priyadarsini Sahoo & Sumeet K. Singh & Zhanyu Ding & Yifan Wang & Sharleen Day & Yao Cong & O, 2021. "The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    4. Chloe Chong & Markus Müller & HuiSong Pak & Dermot Harnett & Florian Huber & Delphine Grun & Marion Leleu & Aymeric Auger & Marion Arnaud & Brian J. Stevenson & Justine Michaux & Ilija Bilic & Antje H, 2020. "Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes," Nature Communications, Nature, vol. 11(1), pages 1-21, December.
    5. Fanindra Kumar Deshmukh & Gili Ben-Nissan & Maya A. Olshina & Maria G. Füzesi-Levi & Caley Polkinghorn & Galina Arkind & Yegor Leushkin & Irit Fainer & Sarel J. Fleishman & Dan Tawfik & Michal Sharon, 2023. "Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    6. Jean Lesne & Marie Locard-Paulet & Julien Parra & Dušan Zivković & Thomas Menneteau & Marie-Pierre Bousquet & Odile Burlet-Schiltz & Julien Marcoux, 2020. "Conformational maps of human 20S proteasomes reveal PA28- and immuno-dependent inter-ring crosstalks," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    7. Juliane Liepe & Michele Mishto & Kathrin Textoris-Taube & Katharina Janek & Christin Keller & Petra Henklein & Peter Michael Kloetzel & Alexey Zaikin, 2010. "The 20S Proteasome Splicing Activity Discovered by SpliceMet," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Charlotte Adams & Wassim Gabriel & Kris Laukens & Mario Picciani & Mathias Wilhelm & Wout Bittremieux & Kurt Boonen, 2024. "Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Edmond E. Creppy & Serge Moukha & Hassen Bacha & Maria Rosaria Carratu, 2005. "How Much Should We Involve Genetic and Environmental Factors in the Risk Assessment of Mycotoxins in Humans?," IJERPH, MDPI, vol. 2(1), pages 1-8, April.
    4. Haiwang Yang & Qianru Li & Emily K. Stroup & Sheng Wang & Zhe Ji, 2024. "Widespread stable noncanonical peptides identified by integrated analyses of ribosome profiling and ORF features," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Xiangwei Wu & Yunxiang Du & Lu-Jun Liang & Ruichao Ding & Tianyi Zhang & Hongyi Cai & Xiaolin Tian & Man Pan & Lei Liu, 2024. "Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ashish Goyal & Jens Bauer & Joschka Hey & Dimitris N. Papageorgiou & Ekaterina Stepanova & Michael Daskalakis & Jonas Scheid & Marissa Dubbelaar & Boris Klimovich & Dominic Schwarz & Melanie Märklin &, 2023. "DNMT and HDAC inhibition induces immunogenic neoantigens from human endogenous retroviral element-derived transcripts," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Wojciech Barczak & Simon M. Carr & Geng Liu & Shonagh Munro & Annalisa Nicastri & Lian Ni Lee & Claire Hutchings & Nicola Ternette & Paul Klenerman & Alexander Kanapin & Anastasia Samsonova & Nicholas, 2023. "Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Georges Bedran & Daniel A. Polasky & Yi Hsiao & Fengchao Yu & Felipe Veiga Leprevost & Javier A. Alfaro & Marcin Cieslik & Alexey I. Nesvizhskii, 2023. "Unraveling the glycosylated immunopeptidome with HLA-Glyco," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Julia Reichelt & Wiebke Sachs & Sarah Frömbling & Julia Fehlert & Maja Studencka-Turski & Anna Betz & Desiree Loreth & Lukas Blume & Susanne Witt & Sandra Pohl & Johannes Brand & Maire Czesla & Jan Kn, 2023. "Non-functional ubiquitin C-terminal hydrolase L1 drives podocyte injury through impairing proteasomes in autoimmune glomerulonephritis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Samuel Rivero-Hinojosa & Melanie Grant & Aswini Panigrahi & Huizhen Zhang & Veronika Caisova & Catherine M. Bollard & Brian R. Rood, 2021. "Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    11. Fanindra Kumar Deshmukh & Gili Ben-Nissan & Maya A. Olshina & Maria G. Füzesi-Levi & Caley Polkinghorn & Galina Arkind & Yegor Leushkin & Irit Fainer & Sarel J. Fleishman & Dan Tawfik & Michal Sharon, 2023. "Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    12. Juliane Liepe & Michele Mishto & Kathrin Textoris-Taube & Katharina Janek & Christin Keller & Petra Henklein & Peter Michael Kloetzel & Alexey Zaikin, 2010. "The 20S Proteasome Splicing Activity Discovered by SpliceMet," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-11, June.
    13. Lida Xu & Zhilin Qu, 2012. "Roles of Protein Ubiquitination and Degradation Kinetics in Biological Oscillations," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-11, April.
    14. Humberto J. Ferreira & Brian J. Stevenson & HuiSong Pak & Fengchao Yu & Jessica Almeida Oliveira & Florian Huber & Marie Taillandier-Coindard & Justine Michaux & Emma Ricart-Altimiras & Anne I. Kraeme, 2024. "Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Hanqing Liao & Carolina Barra & Zhicheng Zhou & Xu Peng & Isaac Woodhouse & Arun Tailor & Robert Parker & Alexia Carré & Persephone Borrow & Michael J. Hogan & Wayne Paes & Laurence C. Eisenlohr & Rob, 2024. "MARS an improved de novo peptide candidate selection method for non-canonical antigen target discovery in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45339-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.