IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38362-3.html
   My bibliography  Save this article

Structural mechanisms of TRPM7 activation and inhibition

Author

Listed:
  • Kirill D. Nadezhdin

    (Columbia University)

  • Leonor Correia

    (Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich)

  • Chamali Narangoda

    (Carnegie Mellon University)

  • Dhilon S. Patel

    (Carnegie Mellon University)

  • Arthur Neuberger

    (Columbia University)

  • Thomas Gudermann

    (Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich
    Comprehensive Pneumology Center, German Center for Lung Research (DZL))

  • Maria G. Kurnikova

    (Carnegie Mellon University)

  • Vladimir Chubanov

    (Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich)

  • Alexander I. Sobolevsky

    (Columbia University)

Abstract

The transient receptor potential channel TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. TRPM7 is implicated in neuronal and cardiovascular disorders, tumor progression and has emerged as a new drug target. Here we use cryo-EM, functional analysis, and molecular dynamics simulations to uncover two distinct structural mechanisms of TRPM7 activation by a gain-of-function mutation and by the agonist naltriben, which show different conformational dynamics and domain involvement. We identify a binding site for highly potent and selective inhibitors and show that they act by stabilizing the TRPM7 closed state. The discovered structural mechanisms provide foundations for understanding the molecular basis of TRPM7 channelopathies and drug development.

Suggested Citation

  • Kirill D. Nadezhdin & Leonor Correia & Chamali Narangoda & Dhilon S. Patel & Arthur Neuberger & Thomas Gudermann & Maria G. Kurnikova & Vladimir Chubanov & Alexander I. Sobolevsky, 2023. "Structural mechanisms of TRPM7 activation and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38362-3
    DOI: 10.1038/s41467-023-38362-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38362-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38362-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yihe Huang & Paige A. Winkler & Weinan Sun & Wei Lü & Juan Du, 2018. "Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium," Nature, Nature, vol. 562(7725), pages 145-149, October.
    2. Luke L. McGoldrick & Appu K. Singh & Kei Saotome & Maria V. Yelshanskaya & Edward C. Twomey & Robert A. Grassucci & Alexander I. Sobolevsky, 2018. "Opening of the human epithelial calcium channel TRPV6," Nature, Nature, vol. 553(7687), pages 233-237, January.
    3. Ying Yin & Mengyu Wu & Allen L. Hsu & William F. Borschel & Mario J. Borgnia & Gabriel C. Lander & Seok-Yong Lee, 2019. "Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Simon Stritt & Paquita Nurden & Remi Favier & Marie Favier & Silvia Ferioli & Sanjeev K. Gotru & Judith M M. van Eeuwijk & Harald Schulze & Alan T. Nurden & Michele P. Lambert & Ernest Turro & Stephan, 2016. "Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    5. Maria V. Yelshanskaya & Dhilon S. Patel & Christopher M. Kottke & Maria G. Kurnikova & Alexander I. Sobolevsky, 2022. "Opening of glutamate receptor channel to subconductance levels," Nature, Nature, vol. 605(7908), pages 172-178, May.
    6. David E. Clapham, 2003. "TRP channels as cellular sensors," Nature, Nature, vol. 426(6966), pages 517-524, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Kirill D. Nadezhdin & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yi-Yu Lin & Yan Lu & Chun-Yun Li & Xue-Fei Ma & Miao-Qing Shao & Yu-Hao Gao & Yu-Qing Zhang & Hai-Ning Jiang & Yan Liu & Yang Yang & Li-Dong Huang & Peng Cao & Heng-Shan Wang & Jin Wang & Ye Yu, 2024. "Finely ordered intracellular domain harbors an allosteric site to modulate physiopathological function of P2X3 receptors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Zhongjie Ye & Nicola Galvanetto & Leonardo Puppulin & Simone Pifferi & Holger Flechsig & Melanie Arndt & Cesar Adolfo Sánchez Triviño & Michael Palma & Shifeng Guo & Horst Vogel & Anna Menini & Clemen, 2024. "Structural heterogeneity of the ion and lipid channel TMEM16F," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Jeffrey Khau & Kirill D. Nadezhdin & Lena S. Khosrof & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Jiangtao Zhang & Yiqiang Shi & Junping Fan & Huiwen Chen & Zhanyi Xia & Bo Huang & Juquan Jiang & Jianke Gong & Zhuo Huang & Daohua Jiang, 2022. "N-type fast inactivation of a eukaryotic voltage-gated sodium channel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Filomena Perri & Adriana Coricello & James D. Adams, 2020. "Monoterpenoids: The Next Frontier in the Treatment of Chronic Pain?," J, MDPI, vol. 3(2), pages 1-20, May.
    8. Luciano Maria Catalfamo & Giulia Marrone & Michele Basilicata & Ilaria Vivarini & Vincenza Paolino & David Della-Morte & Francesco Saverio De Ponte & Francesca Di Daniele & Domenico Quattrone & Danilo, 2022. "The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    9. Elandia A Santos & Bruna SL Coelho & Ester Roffê & Helton C Santiago & Jacqueline I Alvarez-Leite & Lilian G Teixeira, 2018. "Topical Application of Capsaicin Reduces Weight Loss Allergen Aversion and Intestinal Mucosa Inflammation in A Food Allergy Experimental Model," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 10(5), pages 8147-8151, November.
    10. Kirill D. Nadezhdin & Irina A. Talyzina & Aravind Parthasarathy & Arthur Neuberger & David X. Zhang & Alexander I. Sobolevsky, 2023. "Structure of human TRPV4 in complex with GTPase RhoA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Zhengshan Hu & Xiangdong Zheng & Jian Yang, 2023. "Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Johansen B. Amin & Miaomiao He & Ramesh Prasad & Xiaoling Leng & Huan-Xiang Zhou & Lonnie P. Wollmuth, 2023. "Two gates mediate NMDA receptor activity and are under subunit-specific regulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yiqing Wei & Zhuoya Yu & Lili Wang & Xiaojing Li & Na Li & Qinru Bai & Yuhang Wang & Renjie Li & Yufei Meng & Hao Xu & Xianping Wang & Yanli Dong & Zhuo Huang & Xuejun Cai Zhang & Yan Zhao, 2024. "Structural bases of inhibitory mechanism of CaV1.2 channel inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38362-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.