IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47116-8.html
   My bibliography  Save this article

Structural bases of inhibitory mechanism of CaV1.2 channel inhibitors

Author

Listed:
  • Yiqing Wei

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhuoya Yu

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lili Wang

    (School of Pharmaceutical Sciences, Peking University Health Science Center)

  • Xiaojing Li

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Na Li

    (Beijing Chaoyang Hospital, Capital Medical University)

  • Qinru Bai

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuhang Wang

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Renjie Li

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yufei Meng

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Hao Xu

    (University of Science and Technology of China)

  • Xianping Wang

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences)

  • Yanli Dong

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences)

  • Zhuo Huang

    (School of Pharmaceutical Sciences, Peking University Health Science Center)

  • Xuejun Cai Zhang

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yan Zhao

    (CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The voltage-gated calcium channel CaV1.2 is essential for cardiac and vessel smooth muscle contractility and brain function. Accumulating evidence demonstrates that malfunctions of CaV1.2 are involved in brain and heart diseases. Pharmacological inhibition of CaV1.2 is therefore of therapeutic value. Here, we report cryo-EM structures of CaV1.2 in the absence or presence of the antirheumatic drug tetrandrine or antihypertensive drug benidipine. Tetrandrine acts as a pore blocker in a pocket composed of S6II, S6III, and S6IV helices and forms extensive hydrophobic interactions with CaV1.2. Our structure elucidates that benidipine is located in the DIII-DIV fenestration site. Its hydrophobic sidechain, phenylpiperidine, is positioned at the exterior of the pore domain and cradled within a hydrophobic pocket formed by S5DIII, S6DIII, and S6DIV helices, providing additional interactions to exert inhibitory effects on both L-type and T-type voltage gated calcium channels. These findings provide the structural foundation for the rational design and optimization of therapeutic inhibitors of voltage-gated calcium channels.

Suggested Citation

  • Yiqing Wei & Zhuoya Yu & Lili Wang & Xiaojing Li & Na Li & Qinru Bai & Yuhang Wang & Renjie Li & Yufei Meng & Hao Xu & Xianping Wang & Yanli Dong & Zhuo Huang & Xuejun Cai Zhang & Yan Zhao, 2024. "Structural bases of inhibitory mechanism of CaV1.2 channel inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47116-8
    DOI: 10.1038/s41467-024-47116-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47116-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47116-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lingli He & Zhuoya Yu & Ze Geng & Zhuo Huang & Changjiang Zhang & Yanli Dong & Yiwei Gao & Yuhang Wang & Qihao Chen & Le Sun & Xinyue Ma & Bo Huang & Xiaoqun Wang & Yan Zhao, 2022. "Structure, gating, and pharmacology of human CaV3.3 channel," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Luke L. McGoldrick & Appu K. Singh & Kei Saotome & Maria V. Yelshanskaya & Edward C. Twomey & Robert A. Grassucci & Alexander I. Sobolevsky, 2018. "Opening of the human epithelial calcium channel TRPV6," Nature, Nature, vol. 553(7687), pages 233-237, January.
    3. Shuai Gao & Xia Yao & Nieng Yan, 2021. "Structure of human Cav2.2 channel blocked by the painkiller ziconotide," Nature, Nature, vol. 596(7870), pages 143-147, August.
    4. Lin Tang & Tamer M. Gamal El-Din & Teresa M. Swanson & David C. Pryde & Todd Scheuer & Ning Zheng & William A. Catterall, 2016. "Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs," Nature, Nature, vol. 537(7618), pages 117-121, September.
    5. Jianping Wu & Zhen Yan & Zhangqiang Li & Xingyang Qian & Shan Lu & Mengqiu Dong & Qiang Zhou & Nieng Yan, 2016. "Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution," Nature, Nature, vol. 537(7619), pages 191-196, September.
    6. Zhou Chen & Abhisek Mondal & Fayal Abderemane-Ali & Seil Jang & Sangeeta Niranjan & José L. Montaño & Balyn W. Zaro & Daniel L. Minor, 2023. "EMC chaperone–CaV structure reveals an ion channel assembly intermediate," Nature, Nature, vol. 619(7969), pages 410-419, July.
    7. Lin Tang & Tamer M. Gamal El-Din & Jian Payandeh & Gilbert Q. Martinez & Teresa M. Heard & Todd Scheuer & Ning Zheng & William A. Catterall, 2014. "Structural basis for Ca2+ selectivity of a voltage-gated calcium channel," Nature, Nature, vol. 505(7481), pages 56-61, January.
    8. Yanyu Zhao & Gaoxingyu Huang & Qiurong Wu & Kun Wu & Ruiqi Li & Jianlin Lei & Xiaojing Pan & Nieng Yan, 2019. "Cryo-EM structures of apo and antagonist-bound human Cav3.1," Nature, Nature, vol. 576(7787), pages 492-497, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiwei Gao & Shuai Xu & Xiaoli Cui & Hao Xu & Yunlong Qiu & Yiqing Wei & Yanli Dong & Boling Zhu & Chao Peng & Shiqi Liu & Xuejun Cai Zhang & Jianyuan Sun & Zhuo Huang & Yan Zhao, 2023. "Molecular insights into the gating mechanisms of voltage-gated calcium channel CaV2.3," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Xia Yao & Yan Wang & Zhifei Wang & Xiao Fan & Di Wu & Jian Huang & Alexander Mueller & Sarah Gao & Miaohui Hu & Carol V. Robinson & Yong Yu & Shuai Gao & Nieng Yan, 2022. "Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Cheng Zhao & Yuan Xie & Lizhen Xu & Fan Ye & Ximing Xu & Wei Yang & Fan Yang & Jiangtao Guo, 2022. "Structures of a mammalian TRPM8 in closed state," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Kirill D. Nadezhdin & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yue Li & Tian Yuan & Bo Huang & Feng Zhou & Chao Peng & Xiaojing Li & Yunlong Qiu & Bei Yang & Yan Zhao & Zhuo Huang & Daohua Jiang, 2023. "Structure of human NaV1.6 channel reveals Na+ selectivity and pore blockade by 4,9-anhydro-tetrodotoxin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Chancievan Thangaratnarajah & Mark Nijland & Luís Borges-Araújo & Aike Jeucken & Jan Rheinberger & Siewert J. Marrink & Paulo C. T. Souza & Cristina Paulino & Dirk J. Slotboom, 2023. "Expulsion mechanism of the substrate-translocating subunit in ECF transporters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Woori Ko & Euna Lee & Jung-Eun Kim & Hyun-Ho Lim & Byung-Chang Suh, 2024. "The plasma membrane inner leaflet PI(4,5)P2 is essential for the activation of proton-activated chloride channels," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Rodrigo G. Fernandez Lahore & Niccolò P. Pampaloni & Enrico Schiewer & M.-Marcel Heim & Linda Tillert & Johannes Vierock & Johannes Oppermann & Jakob Walther & Dietmar Schmitz & David Owald & Andrew J, 2022. "Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Kirill D. Nadezhdin & Leonor Correia & Chamali Narangoda & Dhilon S. Patel & Arthur Neuberger & Thomas Gudermann & Maria G. Kurnikova & Vladimir Chubanov & Alexander I. Sobolevsky, 2023. "Structural mechanisms of TRPM7 activation and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Guizhen Fan & Mariah R. Baker & Lara E. Terry & Vikas Arige & Muyuan Chen & Alexander B. Seryshev & Matthew L. Baker & Steven J. Ludtke & David I. Yule & Irina I. Serysheva, 2022. "Conformational motions and ligand-binding underlying gating and regulation in IP3R channel," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Jeffrey Khau & Kirill D. Nadezhdin & Lena S. Khosrof & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Simone Pelizzari & Martin C. Heiss & Monica L. Fernández-Quintero & Yousra El Ghaleb & Klaus R. Liedl & Petronel Tuluc & Marta Campiglio & Bernhard E. Flucher, 2024. "CaV1.1 voltage-sensing domain III exclusively controls skeletal muscle excitation-contraction coupling," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Lingli He & Zhuoya Yu & Ze Geng & Zhuo Huang & Changjiang Zhang & Yanli Dong & Yiwei Gao & Yuhang Wang & Qihao Chen & Le Sun & Xinyue Ma & Bo Huang & Xiaoqun Wang & Yan Zhao, 2022. "Structure, gating, and pharmacology of human CaV3.3 channel," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Kirill D. Nadezhdin & Irina A. Talyzina & Aravind Parthasarathy & Arthur Neuberger & David X. Zhang & Alexander I. Sobolevsky, 2023. "Structure of human TRPV4 in complex with GTPase RhoA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Ren, Xiufang & Lu, Yao & Luo, Jie & Zeng, Xudong, 2024. "Response solutions for a kind of quasi-periodic forced neuron system," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    17. Gamma Chi & Qiansheng Liang & Akshay Sridhar & John B. Cowgill & Kasim Sader & Mazdak Radjainia & Pu Qian & Pablo Castro-Hartmann & Shayla Venkaya & Nanki Kaur Singh & Gavin McKinley & Alejandra Ferna, 2022. "Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Minghao Chen & Daniel Blum & Lena Engelhard & Stefan Raunser & Richard Wagner & Christos Gatsogiannis, 2021. "Molecular architecture of black widow spider neurotoxins," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47116-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.