IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38352-5.html
   My bibliography  Save this article

Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein

Author

Listed:
  • Arthur Neuberger

    (Columbia University)

  • Yury A. Trofimov

    (Russian Academy of Sciences)

  • Maria V. Yelshanskaya

    (Columbia University)

  • Kirill D. Nadezhdin

    (Columbia University)

  • Nikolay A. Krylov

    (Russian Academy of Sciences)

  • Roman G. Efremov

    (Russian Academy of Sciences)

  • Alexander I. Sobolevsky

    (Columbia University)

Abstract

Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4–S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.

Suggested Citation

  • Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Kirill D. Nadezhdin & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38352-5
    DOI: 10.1038/s41467-023-38352-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38352-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38352-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luke L. McGoldrick & Appu K. Singh & Kei Saotome & Maria V. Yelshanskaya & Edward C. Twomey & Robert A. Grassucci & Alexander I. Sobolevsky, 2018. "Opening of the human epithelial calcium channel TRPV6," Nature, Nature, vol. 553(7687), pages 233-237, January.
    2. Appu K. Singh & Kei Saotome & Luke L. McGoldrick & Alexander I. Sobolevsky, 2018. "Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Stephen B. Long & Xiao Tao & Ernest B. Campbell & Roderick MacKinnon, 2007. "Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment," Nature, Nature, vol. 450(7168), pages 376-382, November.
    4. Kei Saotome & Appu K. Singh & Maria V. Yelshanskaya & Alexander I. Sobolevsky, 2016. "Crystal structure of the epithelial calcium channel TRPV6," Nature, Nature, vol. 534(7608), pages 506-511, June.
    5. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2022. "Structural mechanism of TRPV3 channel inhibition by the anesthetic dyclonine," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Jeffrey Khau & Kirill D. Nadezhdin & Lena S. Khosrof & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Neuberger & Yury A. Trofimov & Maria V. Yelshanskaya & Jeffrey Khau & Kirill D. Nadezhdin & Lena S. Khosrof & Nikolay A. Krylov & Roman G. Efremov & Alexander I. Sobolevsky, 2023. "Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Arthur Neuberger & Mai Oda & Yury A. Nikolaev & Kirill D. Nadezhdin & Elena O. Gracheva & Sviatoslav N. Bagriantsev & Alexander I. Sobolevsky, 2023. "Human TRPV1 structure and inhibition by the analgesic SB-366791," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Arthur Neuberger & Kirill D. Nadezhdin & Alexander I. Sobolevsky, 2021. "Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Kirill D. Nadezhdin & Irina A. Talyzina & Aravind Parthasarathy & Arthur Neuberger & David X. Zhang & Alexander I. Sobolevsky, 2023. "Structure of human TRPV4 in complex with GTPase RhoA," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Ruth A. Pumroy & Anna D. Protopopova & Tabea C. Fricke & Iris U. Lange & Ferdinand M. Haug & Phuong T. Nguyen & Pamela N. Gallo & Bárbara B. Sousa & Gonçalo J. L. Bernardes & Vladimir Yarov-Yarovoy & , 2022. "Structural insights into TRPV2 activation by small molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. T. Bertie Ansell & Wanling Song & Claire E. Coupland & Loic Carrique & Robin A. Corey & Anna L. Duncan & C. Keith Cassidy & Maxwell M. G. Geurts & Tim Rasmussen & Andrew B. Ward & Christian Siebold & , 2023. "LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Kirill D. Nadezhdin & Leonor Correia & Chamali Narangoda & Dhilon S. Patel & Arthur Neuberger & Thomas Gudermann & Maria G. Kurnikova & Vladimir Chubanov & Alexander I. Sobolevsky, 2023. "Structural mechanisms of TRPM7 activation and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Purushotham Selvakumar & Ana I. Fernández-Mariño & Nandish Khanra & Changhao He & Alice J. Paquette & Bing Wang & Ruiqi Huang & Vaughn V. Smider & William J. Rice & Kenton J. Swartz & Joel R. Meyerson, 2022. "Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Mingfeng Zhang & Yuanyue Shan & Duanqing Pei, 2023. "Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Johanna L. Syrjänen & Max Epstein & Ricardo Gómez & Hiro Furukawa, 2023. "Structure of human CALHM1 reveals key locations for channel regulation and blockade by ruthenium red," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Matthew R Skerritt & Donald L Campbell, 2008. "Non-Native R1 Substitution in the S4 Domain Uniquely Alters Kv4.3 Channel Gating," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-7, November.
    13. Rían W. Manville & J. Alfredo Freites & Richard Sidlow & Douglas J. Tobias & Geoffrey W. Abbott, 2023. "Native American ataxia medicines rescue ataxia-linked mutant potassium channel activity via binding to the voltage sensing domain," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Gamma Chi & Qiansheng Liang & Akshay Sridhar & John B. Cowgill & Kasim Sader & Mazdak Radjainia & Pu Qian & Pablo Castro-Hartmann & Shayla Venkaya & Nanki Kaur Singh & Gavin McKinley & Alejandra Ferna, 2022. "Cryo-EM structure of the human Kv3.1 channel reveals gating control by the cytoplasmic T1 domain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Liying Zhang & Charlotte Simonsen & Lucie Zimova & Kaituo Wang & Lavanya Moparthi & Rachelle Gaudet & Maria Ekoff & Gunnar Nilsson & Ute A. Hellmich & Viktorie Vlachova & Pontus Gourdon & Peter M. Zyg, 2022. "Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Paul J Pfaffinger, 2013. "A Conserved Pre-Block Interaction Motif Regulates Potassium Channel Activation and N-Type Inactivation," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-14, November.
    17. Marcos Matamoros & Xue Wen Ng & Joshua B. Brettmann & David W. Piston & Colin G. Nichols, 2023. "Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Yiqing Wei & Zhuoya Yu & Lili Wang & Xiaojing Li & Na Li & Qinru Bai & Yuhang Wang & Renjie Li & Yufei Meng & Hao Xu & Xianping Wang & Yanli Dong & Zhuo Huang & Xuejun Cai Zhang & Yan Zhao, 2024. "Structural bases of inhibitory mechanism of CaV1.2 channel inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38352-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.