IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v605y2022i7908d10.1038_s41586-022-04637-w.html
   My bibliography  Save this article

Opening of glutamate receptor channel to subconductance levels

Author

Listed:
  • Maria V. Yelshanskaya

    (Columbia University)

  • Dhilon S. Patel

    (Carnegie Mellon University)

  • Christopher M. Kottke

    (Carnegie Mellon University)

  • Maria G. Kurnikova

    (Carnegie Mellon University)

  • Alexander I. Sobolevsky

    (Columbia University)

Abstract

Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that open their pores in response to binding of the agonist glutamate1–3. An ionic current through a single iGluR channel shows up to four discrete conductance levels (O1–O4)4–6. Higher conductance levels have been associated with an increased number of agonist molecules bound to four individual ligand-binding domains (LBDs)6–10. Here we determine structures of a synaptic complex of AMPA-subtype iGluR and the auxiliary subunit γ2 in non-desensitizing conditions with various occupancy of the LBDs by glutamate. We show that glutamate binds to LBDs of subunits B and D only after it is already bound to at least the same number of LBDs that belong to subunits A and C. Our structures combined with single-channel recordings, molecular dynamics simulations and machine-learning analysis suggest that channel opening requires agonist binding to at least two LBDs. Conversely, agonist binding to all four LBDs does not guarantee maximal channel conductance and favours subconductance states O1 and O2, with O3 and O4 being rare and not captured structurally. The lack of subunit independence and low efficiency coupling of glutamate binding to channel opening underlie the gating of synaptic complexes to submaximal conductance levels, which provide a potential for upregulation of synaptic activity.

Suggested Citation

  • Maria V. Yelshanskaya & Dhilon S. Patel & Christopher M. Kottke & Maria G. Kurnikova & Alexander I. Sobolevsky, 2022. "Opening of glutamate receptor channel to subconductance levels," Nature, Nature, vol. 605(7908), pages 172-178, May.
  • Handle: RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04637-w
    DOI: 10.1038/s41586-022-04637-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04637-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04637-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengshan Hu & Xiangdong Zheng & Jian Yang, 2023. "Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Kirill D. Nadezhdin & Leonor Correia & Chamali Narangoda & Dhilon S. Patel & Arthur Neuberger & Thomas Gudermann & Maria G. Kurnikova & Vladimir Chubanov & Alexander I. Sobolevsky, 2023. "Structural mechanisms of TRPM7 activation and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Johansen B. Amin & Miaomiao He & Ramesh Prasad & Xiaoling Leng & Huan-Xiang Zhou & Lonnie P. Wollmuth, 2023. "Two gates mediate NMDA receptor activity and are under subunit-specific regulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhongjie Ye & Nicola Galvanetto & Leonardo Puppulin & Simone Pifferi & Holger Flechsig & Melanie Arndt & Cesar Adolfo Sánchez Triviño & Michael Palma & Shifeng Guo & Horst Vogel & Anna Menini & Clemen, 2024. "Structural heterogeneity of the ion and lipid channel TMEM16F," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:605:y:2022:i:7908:d:10.1038_s41586-022-04637-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.