IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123006391.html
   My bibliography  Save this article

Characterization and performance enhancement of radiative cooling on circular surfaces

Author

Listed:
  • Sheng, Mingfeng
  • Pan, Haodan
  • Xu, Dikai
  • Zhao, Dongliang

Abstract

The performance of radiative cooling depends on the view factor between the cooling surface and the sky. To maximize cooling power, horizontal radiative cooling surfaces are usually adopted. However, non-horizontal surfaces that have only partial access to the sky are ubiquitous in the world, for example, tilted roofs, walls, and pipes, which hinder the penetration of radiative cooling technology to a wider range of applications. In recent years, some radiative cooling structures using infrared reflectors have been investigated. Nevertheless, the absence of study on the radiative cooling power in relation to the parameters of reflectors causes difficulty in designing and optimizing infrared reflectors for non-horizontal surfaces. Herein, we built a comprehensive model to characterize the angular distribution of cooling power on a circular radiative cooling surface. The key factors that affect the cooling power, e.g., reflectors’ geometry and spectral characteristics, are investigated. The model is then validated by experimental data. Furthermore, we proposed a method to design and optimize the dimensions and positions of the cooling surface and reflector. Results show that compared to the baseline condition without infrared reflectors, the total radiative cooling power of the circular surface has increased by 68.3% and 112.5% for flat reflectors and parabolic reflectors, respectively.

Suggested Citation

  • Sheng, Mingfeng & Pan, Haodan & Xu, Dikai & Zhao, Dongliang, 2023. "Characterization and performance enhancement of radiative cooling on circular surfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006391
    DOI: 10.1016/j.rser.2023.113782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong Wang & Yi Wu & Lan Shi & Xinhua Hu & Min Chen & Limin Wu, 2021. "A structural polymer for highly efficient all-day passive radiative cooling," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    3. Baneshi, Mehdi & Gonome, Hiroki & Maruyama, Shigenao, 2020. "Wide-range spectral measurement of radiative properties of commercial greenhouse covering plastics and their impacts into the energy management in a greenhouse," Energy, Elsevier, vol. 210(C).
    4. Lyu Zhou & Haomin Song & Jianwei Liang & Matthew Singer & Ming Zhou & Edgars Stegenburgs & Nan Zhang & Chen Xu & Tien Ng & Zongfu Yu & Boon Ooi & Qiaoqiang Gan, 2019. "A polydimethylsiloxane-coated metal structure for all-day radiative cooling," Nature Sustainability, Nature, vol. 2(8), pages 718-724, August.
    5. Ahmed, Salman & Li, Senji & Li, Zhenpeng & Xiao, Gang & Ma, Tao, 2022. "Enhanced radiative cooling of solar cells by integration with heat pipe," Applied Energy, Elsevier, vol. 308(C).
    6. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    7. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).
    8. Chi, Fang'ai & Liu, Yang & Yan, Jianxiong, 2021. "Integration of Radiative-based air temperature regulating system into residential building for energy saving," Applied Energy, Elsevier, vol. 301(C).
    9. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    5. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    6. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    7. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    8. Seo, Junyong & Choi, Minwoo & Yoon, Siwon & Lee, Bong Jae, 2023. "Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting," Renewable Energy, Elsevier, vol. 217(C).
    9. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    10. Han, Tian & Zhou, Zhihua & Du, Yahui & Wang, Wufan & Wang, Cheng & Yang, Xueqing & Liu, Junwei & Yang, Haibin & Cui, Hongzhi & Yan, Jinyue, 2024. "Advances in radiative sky cooling based on the promising electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    11. Bijarniya, Jay Prakash & Sarkar, Jahar, 2020. "Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Gan Huang & Ashok R. Yengannagari & Kishin Matsumori & Prit Patel & Anurag Datla & Karina Trindade & Enkhlen Amarsanaa & Tonghan Zhao & Uwe Köhler & Dmitry Busko & Bryce S. Richards, 2024. "Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Feng, Chi & Lei, Yue & Huang, Xianqi & Zhang, Weidong & Feng, Ya & Zheng, Xing, 2022. "Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating," Renewable Energy, Elsevier, vol. 193(C), pages 634-644.
    14. Ahmed, Salman & Li, Senji & Li, Zhenpeng & Xiao, Gang & Ma, Tao, 2022. "Enhanced radiative cooling of solar cells by integration with heat pipe," Applied Energy, Elsevier, vol. 308(C).
    15. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Linlin Guo & Zhuqing Liang & Wenhao Li & Can Yang & Endong Wang, 2024. "The Review of Radiative Cooling Technology Applied to Building Roof—A Bibliometric Analysis," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    17. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.
    18. Zaite, Abdelkabir & Belouaggadia, Naoual & Abid, Cherifa & Kaiss, Ahmed & Imghoure, Oumaima, 2024. "Performance enhancement of a photovoltaic-thermal thermoelectric collector using night radiative cooling," Applied Energy, Elsevier, vol. 364(C).
    19. Lv, Song & Sun, Xinyi & Zhang, Bolong & Lai, Yin & Yang, Jiahao, 2024. "Research on the influence and optimization of sunshade effect on radiative cooling performance," Energy, Elsevier, vol. 297(C).
    20. Zhao, Bin & Xuan, Qingdong & Xu, Chengfeng & Hu, Mingke & Dabwan, Yousef N. & Pei, Gang, 2023. "Considerations of passive radiative cooling," Renewable Energy, Elsevier, vol. 219(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.