IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-54983-8.html
   My bibliography  Save this article

Accelerated photonic design of coolhouse film for photosynthesis via machine learning

Author

Listed:
  • Jinlei Li

    (Nanjing University
    Nanjing University
    Nanjing University
    Nanjing University)

  • Yi Jiang

    (Nanjing University
    Nanjing University
    Nanjing University
    Nanjing University)

  • Bo Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yihao Xu

    (Northeastern University)

  • Huanzhi Song

    (University of New South Wales)

  • Ning Xu

    (Nanjing University
    Nanjing University
    Nanjing University
    Nanjing University)

  • Peng Wang

    (Nanjing Agricultural University)

  • Dayang Zhao

    (Nanjing University)

  • Zhe Liu

    (Nanjing Agricultural University)

  • Sheng Shu

    (Nanjing Agricultural University)

  • Juyou Wu

    (Nanjing Agricultural University)

  • Miao Zhong

    (Nanjing University
    Nanjing University)

  • Yongguang Zhang

    (Nanjing University)

  • Kefeng Zhang

    (University of New South Wales)

  • Bin Zhu

    (Nanjing University
    Nanjing University
    Nanjing University
    Nanjing University)

  • Qiang Li

    (Zhejiang University)

  • Wei Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yongmin Liu

    (Northeastern University)

  • Shanhui Fan

    (Stanford University)

  • Jia Zhu

    (Nanjing University
    Nanjing University
    Nanjing University
    Nanjing University)

Abstract

Controlling the suitable light, temperature, and water is essential for plant photosynthesis. While greenhouses/warm-houses are effective in cold or dry climates by creating warm, humid environments, a cool-house that provides a cool local environment with minimal energy and water consumption is highly desirable but has yet to be realized in hot, water-scarce regions. Here, using a synergistic genetic algorithm and machine learning, we propose and demonstrate a coolhouse film that regulates temperature and water for photosynthesis without requiring additional energy or water. This scalable film, selected from hundreds of potential designs, selectively and precisely transmits sunlight needed for photosynthesis while reflecting excess heat, thereby reducing thermal load and evapotranspiration. Its optical properties also exhibit weak angle dependence. In demonstrations in subtropical and arid regions, the film reduces temperatures by 5–17 °C and cuts water loss by half, resulting in more than doubled biomass yield and survival rates. It also improves crop resistance to heat and drought in greenhouse cultivation. The integration of machine learning and photonics provides a powerful toolkit for designing photonic structures and devices aimed at sustainability.

Suggested Citation

  • Jinlei Li & Yi Jiang & Bo Li & Yihao Xu & Huanzhi Song & Ning Xu & Peng Wang & Dayang Zhao & Zhe Liu & Sheng Shu & Juyou Wu & Miao Zhong & Yongguang Zhang & Kefeng Zhang & Bin Zhu & Qiang Li & Wei Li , 2025. "Accelerated photonic design of coolhouse film for photosynthesis via machine learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54983-8
    DOI: 10.1038/s41467-024-54983-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54983-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54983-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lyu Zhou & Haomin Song & Jianwei Liang & Matthew Singer & Ming Zhou & Edgars Stegenburgs & Nan Zhang & Chen Xu & Tien Ng & Zongfu Yu & Boon Ooi & Qiaoqiang Gan, 2019. "A polydimethylsiloxane-coated metal structure for all-day radiative cooling," Nature Sustainability, Nature, vol. 2(8), pages 718-724, August.
    2. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    3. Haitao Liu & Philippe Lalanne, 2008. "Microscopic theory of the extraordinary optical transmission," Nature, Nature, vol. 452(7188), pages 728-731, April.
    4. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    5. T. W. Ebbesen & H. J. Lezec & H. F. Ghaemi & T. Thio & P. A. Wolff, 1998. "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Nature, vol. 391(6668), pages 667-669, February.
    6. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ziwei Fan & Taeseung Hwang & Sam Lin & Yixin Chen & Zi Jing Wong, 2024. "Directional thermal emission and display using pixelated non-imaging micro-optics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Han, Tian & Zhou, Zhihua & Du, Yahui & Wang, Wufan & Wang, Cheng & Yang, Xueqing & Liu, Junwei & Yang, Haibin & Cui, Hongzhi & Yan, Jinyue, 2024. "Advances in radiative sky cooling based on the promising electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    4. Bijarniya, Jay Prakash & Sarkar, Jahar, 2020. "Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Yu-Hui Chen & Ronnie R. Tamming & Kai Chen & Zhepeng Zhang & Fengjiang Liu & Yanfeng Zhang & Justin M. Hodgkiss & Richard J. Blaikie & Boyang Ding & Min Qiu, 2021. "Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).
    7. Jianing Song & Wenluan Zhang & Zhengnan Sun & Mengyao Pan & Feng Tian & Xiuhong Li & Ming Ye & Xu Deng, 2022. "Durable radiative cooling against environmental aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Dan, Ya & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Riffat, Saffa, 2024. "Comprehensive evaluation of integrating radiative sky cooling with compound parabolic concentrator for cooling flux amplifying," Energy, Elsevier, vol. 312(C).
    9. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Su, Weiguang & Cai, Pei & Kang, Ruigeng & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Development of temperature-responsive transmission switch film (TRTSF) using phase change material for self-adaptive radiative cooling," Applied Energy, Elsevier, vol. 322(C).
    12. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    14. Bingyan Liu & Shirong Liu & Vasanthan Devaraj & Yuxiang Yin & Yueqi Zhang & Jingui Ai & Yaochen Han & Jicheng Feng, 2023. "Metal 3D nanoprinting with coupled fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    16. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    17. Gan Huang & Ashok R. Yengannagari & Kishin Matsumori & Prit Patel & Anurag Datla & Karina Trindade & Enkhlen Amarsanaa & Tonghan Zhao & Uwe Köhler & Dmitry Busko & Bryce S. Richards, 2024. "Radiative cooling and indoor light management enabled by a transparent and self-cleaning polymer-based metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Nishad, Safna & Elmoughni, Hend M. & Krupa, Igor, 2025. "Advancements in radiative cooling structures for atmospheric water harvesting: A comprehensive review," Applied Energy, Elsevier, vol. 377(PC).
    19. Pelai, Ricardo & Hagerman, Shannon M. & Kozak, Robert, 2020. "Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations," Forest Policy and Economics, Elsevier, vol. 117(C).
    20. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54983-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.