IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124005093.html
   My bibliography  Save this article

The role of emissivity of the window surface inside and outside the atmospheric window in the radiative cooling effect

Author

Listed:
  • Fei, Yue
  • Xu, Bin
  • Chen, Xing-ni
  • Pei, Gang

Abstract

The emissivity design of building surfaces is crucial for radiative cooling (RC) heat dissipation. This work explores regularities of the influence of the emissivity inside and outside the atmospheric window (AW, 8-13 μm) on the window RC effect using a verified transient building heat transfer model. Results show that the RC effect brought by the radiant heat transfer of the window in non-atmospheric window bands (NAW) may exhibit a reversal phenomenon of first improvement and then weakening with the increase of the outer surface emissivity ε‾NAW. The occurrence of this reversal phenomenon is influenced by multiple factors such as meteorological parameters like ambient temperature and solar radiation, as well as architectural features including window orientation and window-to-wall ratio. In addition, as the window-to-wall ratio increases, when no reversal phenomenon occurs, the average RC regulation ability gap between the emissivity inside and outside the AW decreases from 7–40 times, which is observed when the reversal phenomenon occurs, to about 2–5 times, and the relative importance of ε‾NAW greatly increases. Regularities revealed provide more reliable guidance for the performance research and material design of RC windows.

Suggested Citation

  • Fei, Yue & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2024. "The role of emissivity of the window surface inside and outside the atmospheric window in the radiative cooling effect," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005093
    DOI: 10.1016/j.renene.2024.120444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Xing & Chen, Xing-ni & Xu, Bin & Pei, Gang, 2022. "Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio," Energy, Elsevier, vol. 244(PB).
    2. Wang, Guangpeng & Ma, Yuxin & Zhang, Shu & Li, Dong & Hu, Rong & Zhou, Yingming, 2023. "Thermal performance of a novel double-glazed window combining PCM and solar control glass in summer," Renewable Energy, Elsevier, vol. 219(P1).
    3. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.
    4. Zhen Chen & Linxiao Zhu & Aaswath Raman & Shanhui Fan, 2016. "Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle," Nature Communications, Nature, vol. 7(1), pages 1-5, December.
    5. Chen, Xing-ni & Xu, Bin & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Parameter optimization of phase change material and the combination of phase change material and cool paint according to corresponding energy consumption characteristics under various climates," Energy, Elsevier, vol. 277(C).
    6. Al-Yasiri, Qudama & Alktranee, Mohammed & Szabó, Márta & Arıcı, Müslüm, 2023. "Building envelope-enhanced phase change material and night ventilation: Effect of window orientation and window-to-wall ratio on indoor temperature," Renewable Energy, Elsevier, vol. 218(C).
    7. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    8. Zhao, Bin & Wang, Chuyao & Hu, Mingke & Ao, Xianze & Liu, Jie & Xuan, Qingdong & Pei, Gang, 2022. "Light and thermal management of the semi-transparent radiative cooling glass for buildings," Energy, Elsevier, vol. 238(PA).
    9. Huang, Maoquan & Tang, G.H. & Si, Qiaoling & Pu, Jin Huan & Sun, Qie & Du, Mu, 2023. "Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes," Renewable Energy, Elsevier, vol. 216(C).
    10. Hu, Xin & Zhang, Yingbo & Zhang, Jing & Yang, Hongyu & Wang, Faming & Bin Fei, & Noor, Nuruzzaman, 2022. "Sonochemically-coated transparent wood with ZnO: Passive radiative cooling materials for energy saving applications," Renewable Energy, Elsevier, vol. 193(C), pages 398-406.
    11. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Zhang, Yingbo, 2023. "Cooling performance of all-orientated building facades integrated with photovoltaic-sky radiative cooling system in summer," Renewable Energy, Elsevier, vol. 217(C).
    12. Zhao, Bin & Xuan, Qingdong & Xu, Chengfeng & Hu, Mingke & Dabwan, Yousef N. & Pei, Gang, 2023. "Considerations of passive radiative cooling," Renewable Energy, Elsevier, vol. 219(P2).
    13. Li, Haoran & Zhang, Kai & Shi, Zijie & Jiang, Kaiyu & Wu, Bingyang & Ye, Peiliang, 2023. "Cooling benefit of implementing radiative cooling on a city-scale," Renewable Energy, Elsevier, vol. 212(C), pages 372-381.
    14. Si-Zhe Sheng & Jin-Long Wang & Bin Zhao & Zhen He & Xue-Fei Feng & Qi-Guo Shang & Cheng Chen & Gang Pei & Jun Zhou & Jian-Wei Liu & Shu-Hong Yu, 2023. "Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Han, Miao & Pu, Jihong & Liu, Yongdong & Liu, Xingjiang & Mei, Hongyuan & Shen, Chao, 2023. "Near-infrared blocking window based on ATO-CWO/PVB nano-lamination," Renewable Energy, Elsevier, vol. 219(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei, Yue & Xu, Bin & Chen, Xing-ni & Pei, Gang, 2024. "Optimization of infrared emissivity design for radiative cooling windows using artificial neural networks: Considering the diversity of climate and building features," Renewable Energy, Elsevier, vol. 231(C).
    2. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    3. Xu, Bin & Fei, Yue & Chen, Xing-ni & Xie, Xing & Pei, Gang, 2024. "Influence of selective infrared emissivity design on the radiative cooling effect of windows: Laws exploration based on transient analysis," Energy, Elsevier, vol. 289(C).
    4. Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2024. "Combination optimization, importance order of parameters and aging consequence prediction for thermal insulation coating with radiation characteristics," Energy, Elsevier, vol. 290(C).
    5. Yang, Jinwen & Han, Jitian & Duan, Lian & Zhu, Wanchao & Liang, Wenxing & Mou, Chaoyang, 2024. "Investigation on a novel hybrid system based on radiative sky cooling and split thermoelectric cooler driven by photovoltaic cell," Renewable Energy, Elsevier, vol. 229(C).
    6. Xie, Xing & Xu, Bin & Fei, Yue & Chen, Xing-ni & Pei, Gang & Ji, Jie, 2024. "Passive energy-saving design strategy and realization on high window-wall ratio buildings in subtropical regions," Renewable Energy, Elsevier, vol. 229(C).
    7. Hu, Xin & Zhang, Yingbo & Cai, Wei & Ming, Yang & Yu, Rujun & Yang, Hongyu & Noor, Nuruzzaman & Fei, Bin, 2023. "Transparent wood with heat shielding and high fire safety properties for energy saving applications," Renewable Energy, Elsevier, vol. 219(P1).
    8. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    9. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    11. Li, Hao & Zhang, Ji & Liu, Xiaohua & Zhang, Tao, 2022. "Comparative investigation of energy-saving potential and technical economy of rooftop radiative cooling and photovoltaic systems," Applied Energy, Elsevier, vol. 328(C).
    12. Xu, Fusuo & Zhang, Jianshun & Gao, Zhi, 2024. "A case study of the effect of building surface cool and super cool materials on residential neighbourhood energy consumption in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Xu, Weiping & Gong, Sihong & Wang, Ningsheng & Zhao, Wenbo & Yin, Hongle & Yang, Ronggui & Yin, Xiaobo & Tan, Gang, 2023. "Temperature reduction and energy-saving analysis in grain storage: Field application of radiative cooling technology to grain storage warehouse," Renewable Energy, Elsevier, vol. 218(C).
    14. Xuan, Qingdong & Yang, Ning & Kai, Mingfeng & Wang, Chuyao & Jiang, Bin & Liu, Xunfen & Li, Guiqiang & Pei, Gang & Zhao, Bin, 2024. "Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings," Energy, Elsevier, vol. 304(C).
    15. Quan Zhang & Yiwen Lv & Yufeng Wang & Shixiong Yu & Chenxi Li & Rujun Ma & Yongsheng Chen, 2022. "Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Peoples, Joseph & Hung, Yu-Wei & Li, Xiangyu & Gallagher, Daniel & Fruehe, Nathan & Pottschmidt, Mason & Breseman, Cole & Adams, Conrad & Yuksel, Anil & Braun, James & Horton, W. Travis & Ruan, Xiulin, 2022. "Concentrated radiative cooling," Applied Energy, Elsevier, vol. 310(C).
    17. Pu, Jihong & Shen, Chao & Lu, Lin, 2023. "Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids," Energy, Elsevier, vol. 283(C).
    18. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
    19. Vilà, Roger & Medrano, Marc & Castell, Albert, 2023. "Climate change influences in the determination of the maximum power potential of radiative cooling. Evolution and seasonal study in Europe," Renewable Energy, Elsevier, vol. 212(C), pages 500-513.
    20. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.