IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38335-6.html
   My bibliography  Save this article

NetBID2 provides comprehensive hidden driver analysis

Author

Listed:
  • Xinran Dong

    (St. Jude Children’s Research Hospital
    Children’s Hospital of Fudan University)

  • Liang Ding

    (St. Jude Children’s Research Hospital)

  • Andrew Thrasher

    (St. Jude Children’s Research Hospital)

  • Xinge Wang

    (St. Jude Children’s Research Hospital
    University of Illinois at Chicago)

  • Jingjing Liu

    (St. Jude Children’s Research Hospital)

  • Qingfei Pan

    (St. Jude Children’s Research Hospital)

  • Jordan Rash

    (St. Jude Children’s Research Hospital)

  • Yogesh Dhungana

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Xu Yang

    (St. Jude Children’s Research Hospital)

  • Isabel Risch

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Yuxin Li

    (Centre for Proteomics and Metabolomics, St. Jude Children’s Research Hospital)

  • Lei Yan

    (St. Jude Children’s Research Hospital)

  • Michael Rusch

    (St. Jude Children’s Research Hospital)

  • Clay McLeod

    (St. Jude Children’s Research Hospital)

  • Koon-Kiu Yan

    (St. Jude Children’s Research Hospital)

  • Junmin Peng

    (Centre for Proteomics and Metabolomics, St. Jude Children’s Research Hospital)

  • Hongbo Chi

    (St. Jude Children’s Research Hospital)

  • Jinghui Zhang

    (St. Jude Children’s Research Hospital)

  • Jiyang Yu

    (St. Jude Children’s Research Hospital)

Abstract

Many signaling and other genes known as “hidden” drivers may not be genetically or epigenetically altered or differentially expressed at the mRNA or protein levels, but, rather, drive a phenotype such as tumorigenesis via post-translational modification or other mechanisms. However, conventional approaches based on genomics or differential expression are limited in exposing such hidden drivers. Here, we present a comprehensive algorithm and toolkit NetBID2 (data-driven network-based Bayesian inference of drivers, version 2), which reverse-engineers context-specific interactomes and integrates network activity inferred from large-scale multi-omics data, empowering the identification of hidden drivers that could not be detected by traditional analyses. NetBID2 has substantially re-engineered the previous prototype version by providing versatile data visualization and sophisticated statistical analyses, which strongly facilitate researchers for result interpretation through end-to-end multi-omics data analysis. We demonstrate the power of NetBID2 using three hidden driver examples. We deploy NetBID2 Viewer, Runner, and Cloud apps with 145 context-specific gene regulatory and signaling networks across normal tissues and paediatric and adult cancers to facilitate end-to-end analysis, real-time interactive visualization and cloud-based data sharing. NetBID2 is freely available at https://jyyulab.github.io/NetBID .

Suggested Citation

  • Xinran Dong & Liang Ding & Andrew Thrasher & Xinge Wang & Jingjing Liu & Qingfei Pan & Jordan Rash & Yogesh Dhungana & Xu Yang & Isabel Risch & Yuxin Li & Lei Yan & Michael Rusch & Clay McLeod & Koon-, 2023. "NetBID2 provides comprehensive hidden driver analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38335-6
    DOI: 10.1038/s41467-023-38335-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38335-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38335-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingrong Du & Jing Wen & Yanyan Wang & Peer W. F. Karmaus & Alireza Khatamian & Haiyan Tan & Yuxin Li & Cliff Guy & Thanh-Long M. Nguyen & Yogesh Dhungana & Geoffrey Neale & Junmin Peng & Jiyang Yu & , 2018. "Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells," Nature, Nature, vol. 558(7708), pages 141-145, June.
    2. Xiaotu Ma & Yu Liu & Yanling Liu & Ludmil B. Alexandrov & Michael N. Edmonson & Charles Gawad & Xin Zhou & Yongjin Li & Michael C. Rusch & John Easton & Robert Huether & Veronica Gonzalez-Pena & Mark , 2018. "Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours," Nature, Nature, vol. 555(7696), pages 371-376, March.
    3. Chong T. Luo & Hatice U. Osmanbeyoglu & Mytrang H. Do & Michael R. Bivona & Ahmed Toure & Davina Kang & Yuchen Xie & Christina S. Leslie & Ming O. Li, 2017. "Ets transcription factor GABP controls T cell homeostasis and immunity," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amanda C. Lorentzian & Jenna Rever & Enes K. Ergin & Meiyun Guo & Neha M. Akella & Nina Rolf & C. James Lim & Gregor S. D. Reid & Christopher A. Maxwell & Philipp F. Lange, 2023. "Targetable lesions and proteomes predict therapy sensitivity through disease evolution in pediatric acute lymphoblastic leukemia," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Jiajia Wang & Jiaying Wang & Wenxiang Hong & Lulu Zhang & Liqian Song & Qi Shi & Yanfei Shao & Guifeng Hao & Chunyan Fang & Yueping Qiu & Lijun Yang & Zhaoxu Yang & Jincheng Wang & Ji Cao & Bo Yang & , 2021. "Optineurin modulates the maturation of dendritic cells to regulate autoimmunity through JAK2-STAT3 signaling," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. David Wang & Mathieu Quesnel-Vallieres & San Jewell & Moein Elzubeir & Kristen Lynch & Andrei Thomas-Tikhonenko & Yoseph Barash, 2023. "A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Lucía López & Luciano Gastón Morosi & Federica Terza & Pierre Bourdely & Giuseppe Rospo & Roberto Amadio & Giulia Maria Piperno & Valentina Russo & Camilla Volponi & Simone Vodret & Sonal Joshi & Fran, 2024. "Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Ulrik Kristoffer Stoltze & Jon Foss-Skiftesvik & Thomas van Overeem Hansen & Simon Rasmussen & Konrad J. Karczewski & Karin A. W. Wadt & Kjeld Schmiegelow, 2024. "The evolutionary impact of childhood cancer on the human gene pool," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Hope Mumme & Beena E. Thomas & Swati S. Bhasin & Upaasana Krishnan & Bhakti Dwivedi & Pruthvi Perumalla & Debasree Sarkar & Gulay B. Ulukaya & Himalee S. Sabnis & Sunita I. Park & Deborah DeRyckere & , 2023. "Single-cell analysis reveals altered tumor microenvironments of relapse- and remission-associated pediatric acute myeloid leukemia," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    8. Ingrid M. Saldana-Guerrero & Luis F. Montano-Gutierrez & Katy Boswell & Christoph Hafemeister & Evon Poon & Lisa E. Shaw & Dylan Stavish & Rebecca A. Lea & Sara Wernig-Zorc & Eva Bozsaky & Irfete S. F, 2024. "A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    9. Lele Song & Qinglan Li & Lingbo Xia & Arushi Eesha Sahay & Qi Qiu & Yuanyuan Li & Haitao Li & Kotaro Sasaki & Katalin Susztak & Hao Wu & Liling Wan, 2024. "Single-cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    10. Suzanne J. Forrest & Hersh Gupta & Abigail Ward & Yvonne Y. Li & Duong Doan & Alyaa Al-Ibraheemi & Sanda Alexandrescu & Pratiti Bandopadhayay & Suzanne Shusterman & Elizabeth A. Mullen & Natalie B. Co, 2024. "Molecular profiling of 888 pediatric tumors informs future precision trials and data-sharing initiatives in pediatric cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Yanling Liu & Jonathon Klein & Richa Bajpai & Li Dong & Quang Tran & Pandurang Kolekar & Jenny L. Smith & Rhonda E. Ries & Benjamin J. Huang & Yi-Cheng Wang & Todd A. Alonzo & Liqing Tian & Heather L., 2023. "Etiology of oncogenic fusions in 5,190 childhood cancers and its clinical and therapeutic implication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study," IJERPH, MDPI, vol. 19(13), pages 1-27, June.
    13. Han Wang & Huiying Sun & Bilin Liang & Fang Zhang & Fan Yang & Bowen Cui & Lixia Ding & Xiang Wang & Ronghua Wang & Jiaoyang Cai & Yanjing Tang & Jianan Rao & Wenting Hu & Shuang Zhao & Wenyan Wu & Xi, 2023. "Chromatin accessibility landscape of relapsed pediatric B-lineage acute lymphoblastic leukemia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Marco Bolis & Daniela Bossi & Arianna Vallerga & Valentina Ceserani & Manuela Cavalli & Daniela Impellizzieri & Laura Di Rito & Eugenio Zoni & Simone Mosole & Angela Rita Elia & Andrea Rinaldi & Ricar, 2021. "Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    15. Eleanor L. Woodward & Minjun Yang & Larissa H. Moura-Castro & Hilda Bos & Rebeqa Gunnarsson & Linda Olsson-Arvidsson & Diana C. J. Spierings & Anders Castor & Nicolas Duployez & Marketa Zaliova & Jan , 2023. "Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Ting Liu & Jianan Rao & Wenting Hu & Bowen Cui & Jiaoyang Cai & Yuhan Liu & Huiying Sun & Xiaoxiao Chen & Yanjing Tang & Jing Chen & Xiang Wang & Han Wang & Wubin Qian & Binchen Mao & Sheng Guo & Rong, 2022. "Distinct genomic landscape of Chinese pediatric acute myeloid leukemia impacts clinical risk classification," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Juraj Adamik & Paul V. Munson & Felix J. Hartmann & Alexis J. Combes & Philippe Pierre & Matthew F. Krummel & Sean C. Bendall & Rafael J. Argüello & Lisa H. Butterfield, 2022. "Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Dominik Laubscher & Berkley E. Gryder & Benjamin D. Sunkel & Thorkell Andresson & Marco Wachtel & Sudipto Das & Bernd Roschitzki & Witold Wolski & Xiaoli S. Wu & Hsien-Chao Chou & Young K. Song & Chao, 2021. "BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38335-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.