IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7708d10.1038_s41586-018-0177-0.html
   My bibliography  Save this article

Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells

Author

Listed:
  • Xingrong Du

    (St Jude Children’s Research Hospital)

  • Jing Wen

    (St Jude Children’s Research Hospital)

  • Yanyan Wang

    (St Jude Children’s Research Hospital)

  • Peer W. F. Karmaus

    (St Jude Children’s Research Hospital)

  • Alireza Khatamian

    (St Jude Children’s Research Hospital)

  • Haiyan Tan

    (St Jude Children’s Research Hospital
    St Jude Children’s Research Hospital)

  • Yuxin Li

    (St Jude Children’s Research Hospital
    St Jude Children’s Research Hospital)

  • Cliff Guy

    (St Jude Children’s Research Hospital)

  • Thanh-Long M. Nguyen

    (St Jude Children’s Research Hospital)

  • Yogesh Dhungana

    (St Jude Children’s Research Hospital)

  • Geoffrey Neale

    (St Jude Children’s Research Hospital)

  • Junmin Peng

    (St Jude Children’s Research Hospital
    St Jude Children’s Research Hospital)

  • Jiyang Yu

    (St Jude Children’s Research Hospital)

  • Hongbo Chi

    (St Jude Children’s Research Hospital)

Abstract

Dendritic cells orchestrate the crosstalk between innate and adaptive immunity. CD8α+ dendritic cells present antigens to CD8+ T cells and elicit cytotoxic T cell responses to viruses, bacteria and tumours 1 . Although lineage-specific transcriptional regulators of CD8α+ dendritic cell development have been identified 2 , the molecular pathways that selectively orchestrate CD8α+ dendritic cell function remain elusive. Moreover, metabolic reprogramming is important for dendritic cell development and activation3,4, but metabolic dependence and regulation of dendritic cell subsets are largely uncharacterized. Here we use a data-driven systems biology algorithm (NetBID) to identify a role of the Hippo pathway kinases Mst1 and Mst2 (Mst1/2) in selectively programming CD8α+ dendritic cell function and metabolism. Our NetBID analysis reveals a marked enrichment of the activities of Hippo pathway kinases in CD8α+ dendritic cells relative to CD8α− dendritic cells. Dendritic cell-specific deletion of Mst1/2—but not Lats1 and Lats2 (Lats1/2) or Yap and Taz (Yap/Taz), which mediate canonical Hippo signalling—disrupts homeostasis and function of CD8+ T cells and anti-tumour immunity. Mst1/2-deficient CD8α+ dendritic cells are impaired in presentation of extracellular proteins and cognate peptides to prime CD8+ T cells, while CD8α− dendritic cells that lack Mst1/2 have largely normal function. Mechanistically, compared to CD8α− dendritic cells, CD8α+ dendritic cells exhibit much stronger oxidative metabolism and critically depend on Mst1/2 signalling to maintain bioenergetic activities and mitochondrial dynamics for their functional capacities. Further, selective expression of IL-12 by CD8α+ dendritic cells depends on Mst1/2 and the crosstalk with non-canonical NF-κB signalling. Our findings identify Mst1/2 as selective drivers of CD8α+ dendritic cell function by integrating metabolic activity and cytokine signalling, and highlight that the interplay between immune signalling and metabolic reprogramming underlies the unique functions of dendritic cell subsets.

Suggested Citation

  • Xingrong Du & Jing Wen & Yanyan Wang & Peer W. F. Karmaus & Alireza Khatamian & Haiyan Tan & Yuxin Li & Cliff Guy & Thanh-Long M. Nguyen & Yogesh Dhungana & Geoffrey Neale & Junmin Peng & Jiyang Yu & , 2018. "Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells," Nature, Nature, vol. 558(7708), pages 141-145, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7708:d:10.1038_s41586-018-0177-0
    DOI: 10.1038/s41586-018-0177-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0177-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0177-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juraj Adamik & Paul V. Munson & Felix J. Hartmann & Alexis J. Combes & Philippe Pierre & Matthew F. Krummel & Sean C. Bendall & Rafael J. Argüello & Lisa H. Butterfield, 2022. "Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Lucía López & Luciano Gastón Morosi & Federica Terza & Pierre Bourdely & Giuseppe Rospo & Roberto Amadio & Giulia Maria Piperno & Valentina Russo & Camilla Volponi & Simone Vodret & Sonal Joshi & Fran, 2024. "Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Jiajia Wang & Jiaying Wang & Wenxiang Hong & Lulu Zhang & Liqian Song & Qi Shi & Yanfei Shao & Guifeng Hao & Chunyan Fang & Yueping Qiu & Lijun Yang & Zhaoxu Yang & Jincheng Wang & Ji Cao & Bo Yang & , 2021. "Optineurin modulates the maturation of dendritic cells to regulate autoimmunity through JAK2-STAT3 signaling," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Xinran Dong & Liang Ding & Andrew Thrasher & Xinge Wang & Jingjing Liu & Qingfei Pan & Jordan Rash & Yogesh Dhungana & Xu Yang & Isabel Risch & Yuxin Li & Lei Yan & Michael Rusch & Clay McLeod & Koon-, 2023. "NetBID2 provides comprehensive hidden driver analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7708:d:10.1038_s41586-018-0177-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.