IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37356-5.html
   My bibliography  Save this article

Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukaemia

Author

Listed:
  • Eleanor L. Woodward

    (Lund University)

  • Minjun Yang

    (Lund University)

  • Larissa H. Moura-Castro

    (Lund University)

  • Hilda Bos

    (University of Groningen, University Medical Center Groningen)

  • Rebeqa Gunnarsson

    (Lund University)

  • Linda Olsson-Arvidsson

    (Lund University
    Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne)

  • Diana C. J. Spierings

    (University of Groningen, University Medical Center Groningen)

  • Anders Castor

    (Lund University)

  • Nicolas Duployez

    (Centre Hospitalier Universitaire (CHU) Lille
    Unité Mixte de Recherche en Santé (UMR-S) 1172, INSERM/University of Lille)

  • Marketa Zaliova

    (Charles University/University Hospital Motol
    Childhood Leukaemia Investigation Prague (CLIP))

  • Jan Zuna

    (Charles University/University Hospital Motol
    Childhood Leukaemia Investigation Prague (CLIP))

  • Bertil Johansson

    (Lund University
    Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne)

  • Floris Foijer

    (University of Groningen, University Medical Center Groningen)

  • Kajsa Paulsson

    (Lund University)

Abstract

High hyperdiploid acute lymphoblastic leukemia (HeH ALL), one of the most common childhood malignancies, is driven by nonrandom aneuploidy (abnormal chromosome numbers) mainly comprising chromosomal gains. In this study, we investigate how aneuploidy in HeH ALL arises. Single cell whole genome sequencing of 2847 cells from nine primary cases and one normal bone marrow reveals that HeH ALL generally display low chromosomal heterogeneity, indicating that they are not characterized by chromosomal instability and showing that aneuploidy-driven malignancies are not necessarily chromosomally heterogeneous. Furthermore, most chromosomal gains are present in all leukemic cells, suggesting that they arose early during leukemogenesis. Copy number data from 577 primary cases reveals selective pressures that were used for in silico modeling of aneuploidy development. This shows that the aneuploidy in HeH ALL likely arises by an initial tripolar mitosis in a diploid cell followed by clonal evolution, in line with a punctuated evolution model.

Suggested Citation

  • Eleanor L. Woodward & Minjun Yang & Larissa H. Moura-Castro & Hilda Bos & Rebeqa Gunnarsson & Linda Olsson-Arvidsson & Diana C. J. Spierings & Anders Castor & Nicolas Duployez & Marketa Zaliova & Jan , 2023. "Clonal origin and development of high hyperdiploidy in childhood acute lymphoblastic leukaemia," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37356-5
    DOI: 10.1038/s41467-023-37356-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37356-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37356-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shimin Shuai & Steven Gallinger & Lincoln D. Stein, 2020. "Combined burden and functional impact tests for cancer driver discovery using DriverPower," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Neil J. Ganem & Susana A. Godinho & David Pellman, 2009. "A mechanism linking extra centrosomes to chromosomal instability," Nature, Nature, vol. 460(7252), pages 278-282, July.
    3. Ludmil B. Alexandrov & Serena Nik-Zainal & David C. Wedge & Samuel A. J. R. Aparicio & Sam Behjati & Andrew V. Biankin & Graham R. Bignell & Niccolò Bolli & Ake Borg & Anne-Lise Børresen-Dale & Sandri, 2013. "Correction: Corrigendum: Signatures of mutational processes in human cancer," Nature, Nature, vol. 502(7470), pages 258-258, October.
    4. Michael S. Lawrence & Petar Stojanov & Paz Polak & Gregory V. Kryukov & Kristian Cibulskis & Andrey Sivachenko & Scott L. Carter & Chip Stewart & Craig H. Mermel & Steven A. Roberts & Adam Kiezun & Pe, 2013. "Mutational heterogeneity in cancer and the search for new cancer-associated genes," Nature, Nature, vol. 499(7457), pages 214-218, July.
    5. Ludmil B. Alexandrov & Serena Nik-Zainal & David C. Wedge & Samuel A. J. R. Aparicio & Sam Behjati & Andrew V. Biankin & Graham R. Bignell & Niccolò Bolli & Ake Borg & Anne-Lise Børresen-Dale & Sandri, 2013. "Signatures of mutational processes in human cancer," Nature, Nature, vol. 500(7463), pages 415-421, August.
    6. Xiaotu Ma & Yu Liu & Yanling Liu & Ludmil B. Alexandrov & Michael N. Edmonson & Charles Gawad & Xin Zhou & Yongjin Li & Michael C. Rusch & John Easton & Robert Huether & Veronica Gonzalez-Pena & Mark , 2018. "Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours," Nature, Nature, vol. 555(7696), pages 371-376, March.
    7. Charles G. Mullighan & Salil Goorha & Ina Radtke & Christopher B. Miller & Elaine Coustan-Smith & James D. Dalton & Kevin Girtman & Susan Mathew & Jing Ma & Stanley B. Pounds & Xiaoping Su & Ching-Hon, 2007. "Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia," Nature, Nature, vol. 446(7137), pages 758-764, April.
    8. Ludmil B. Alexandrov & Jaegil Kim & Nicholas J. Haradhvala & Mi Ni Huang & Alvin Wei Tian Ng & Yang Wu & Arnoud Boot & Kyle R. Covington & Dmitry A. Gordenin & Erik N. Bergstrom & S. M. Ashiqul Islam , 2020. "The repertoire of mutational signatures in human cancer," Nature, Nature, vol. 578(7793), pages 94-101, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambrocio Sanchez & Pedro Ortega & Ramin Sakhtemani & Lavanya Manjunath & Sunwoo Oh & Elodie Bournique & Alexandrea Becker & Kyumin Kim & Cameron Durfee & Nuri Alpay Temiz & Xiaojiang S. Chen & Reuben , 2024. "Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Sebastian Carrasco Pro & Heather Hook & David Bray & Daniel Berenzy & Devlin Moyer & Meimei Yin & Adam Thomas Labadorf & Ryan Tewhey & Trevor Siggers & Juan Ignacio Fuxman Bass, 2023. "Widespread perturbation of ETS factor binding sites in cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Mei Lin & Xiao-Long Zhang & Rui You & You-Ping Liu & Hong-Min Cai & Li-Zhi Liu & Xue-Fei Liu & Xiong Zou & Yu-Long Xie & Ru-Hai Zou & Yi-Nuan Zhang & Rui Sun & Wei-Yi Feng & Hai-Yan Wang & Gui-Hua Tao, 2023. "Evolutionary route of nasopharyngeal carcinoma metastasis and its clinical significance," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Anna Luiza Silva Almeida Vicente & Alexei Novoloaca & Vincent Cahais & Zainab Awada & Cyrille Cuenin & Natália Spitz & André Lopes Carvalho & Adriane Feijó Evangelista & Camila Souza Crovador & Rui Ma, 2022. "Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Teresa Maria Rosaria Noviello & Anna Maria Giacomo & Francesca Pia Caruso & Alessia Covre & Roberta Mortarini & Giovanni Scala & Maria Claudia Costa & Sandra Coral & Wolf H. Fridman & Catherine Sautès, 2023. "Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Sujath Abbas & Oriol Pich & Ginny Devonshire & Shahriar A. Zamani & Annalise Katz-Summercorn & Sarah Killcoyne & Calvin Cheah & Barbara Nutzinger & Nicola Grehan & Nuria Lopez-Bigas & Rebecca C. Fitzg, 2023. "Mutational signature dynamics shaping the evolution of oesophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Martin Boström & Erik Larsson, 2022. "Somatic mutation distribution across tumour cohorts provides a signal for positive selection in cancer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Sriram Vijayraghavan & Thomas Blouin & James McCollum & Latarsha Porcher & François Virard & Jiri Zavadil & Carol Feghali-Bostwick & Natalie Saini, 2024. "Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Josefine Radke & Naveed Ishaque & Randi Koll & Zuguang Gu & Elisa Schumann & Lina Sieverling & Sebastian Uhrig & Daniel Hübschmann & Umut H. Toprak & Cristina López & Xavier Pastor Hostench & Simone B, 2022. "The genomic and transcriptional landscape of primary central nervous system lymphoma," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    11. Jennifer B. Shah & Dana Pueschl & Bradley Wubbenhorst & Mengyao Fan & John Pluta & Kurt D’Andrea & Anna P. Hubert & Jake S. Shilan & Wenting Zhou & Adam A. Kraya & Alba Llop Guevara & Catherine Ruan &, 2022. "Analysis of matched primary and recurrent BRCA1/2 mutation-associated tumors identifies recurrence-specific drivers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Lino Möhrmann & Maximilian Werner & Małgorzata Oleś & Andreas Mock & Sebastian Uhrig & Arne Jahn & Simon Kreutzfeldt & Martina Fröhlich & Barbara Hutter & Nagarajan Paramasivam & Daniela Richter & Kat, 2022. "Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Yasha Butt & Ramin Sakhtemani & Rukshana Mohamad-Ramshan & Michael S. Lawrence & Ashok S. Bhagwat, 2024. "Distinguishing preferences of human APOBEC3A and APOBEC3B for cytosines in hairpin loops, and reflection of these preferences in APOBEC-signature cancer genome mutations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Peter Georgeson & Tabitha A. Harrison & Bernard J. Pope & Syed H. Zaidi & Conghui Qu & Robert S. Steinfelder & Yi Lin & Jihoon E. Joo & Khalid Mahmood & Mark Clendenning & Romy Walker & Efrat L. Amita, 2022. "Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Bernard C. H. Lee & Philip S. Robinson & Tim H. H. Coorens & Helen H. N. Yan & Sigurgeir Olafsson & Henry Lee-Six & Mathijs A. Sanders & Hoi Cheong Siu & James Hewinson & Sarah S. K. Yue & Wai Yin Tsu, 2022. "Mutational landscape of normal epithelial cells in Lynch Syndrome patients," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. David Wang & Mathieu Quesnel-Vallieres & San Jewell & Moein Elzubeir & Kristen Lynch & Andrei Thomas-Tikhonenko & Yoseph Barash, 2023. "A Bayesian model for unsupervised detection of RNA splicing based subtypes in cancers," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Amanda Fitzpatrick & Marjan Iravani & Adam Mills & David Vicente & Thanussuyah Alaguthurai & Ioannis Roxanis & Nicholas C. Turner & Syed Haider & Andrew N. J. Tutt & Clare M. Isacke, 2023. "Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Daan M. K. Soest & Paulien E. Polderman & Wytze T. F. Toom & Janneke P. Keijer & Markus J. Roosmalen & Tim M. F. Leyten & Johannes Lehmann & Susan Zwakenberg & Sasha Henau & Ruben Boxtel & Boudewijn M, 2024. "Mitochondrial H2O2 release does not directly cause damage to chromosomal DNA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Jurica Levatić & Marina Salvadores & Francisco Fuster-Tormo & Fran Supek, 2022. "Mutational signatures are markers of drug sensitivity of cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Qingli Guo & Eszter Lakatos & Ibrahim Al Bakir & Kit Curtius & Trevor A. Graham & Ville Mustonen, 2022. "The mutational signatures of formalin fixation on the human genome," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37356-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.