IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38325-8.html
   My bibliography  Save this article

Unique Huygens-Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal

Author

Listed:
  • Xing-Xiang Wang

    (Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
    University of Tsukuba)

  • Zhiwei Guo

    (Tongji University)

  • Juan Song

    (Tongji University)

  • Haitao Jiang

    (Tongji University)

  • Hong Chen

    (Tongji University)

  • Xiao Hu

    (Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
    University of Tsukuba)

Abstract

Light propagates in various ways depending on environment, including uniform medium, surface/interface and photonic crystals, which appears ubiquitously in daily life and has been exploited for advanced optics technology. We unveiled that a topological photonic crystal exhibits unique electromagnetic (EM) transport properties originating from the Dirac frequency dispersion and multicomponent spinor eigenmodes. Measuring precisely local Poynting vectors in microstrips of honeycomb structure where optics topology emerges upon a band gap opening in the Dirac dispersion and a p-d band inversion induced by a Kekulé-type distortion respecting C6v symmetry, we showed that a chiral wavelet induces a global EM transportation circulating in the direction counter to the source, which is intimately related to the topological band gap specified by a negative Dirac mass. This brand-new Huygens-Fresnel phenomenon can be considered as the counterpart of negative refraction of EM plane waves associated with upwardly convex dispersions of photonic crystals, and our present finding is expected to open a new window for photonic innovations.

Suggested Citation

  • Xing-Xiang Wang & Zhiwei Guo & Juan Song & Haitao Jiang & Hong Chen & Xiao Hu, 2023. "Unique Huygens-Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38325-8
    DOI: 10.1038/s41467-023-38325-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38325-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38325-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zheng Wang & Yidong Chong & J. D. Joannopoulos & Marin Soljačić, 2009. "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Nature, vol. 461(7265), pages 772-775, October.
    2. Yuan Li & Yong Sun & Weiwei Zhu & Zhiwei Guo & Jun Jiang & Toshikaze Kariyado & Hong Chen & Xiao Hu, 2018. "Topological LC-circuits based on microstrips and observation of electromagnetic modes with orbital angular momentum," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    3. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    4. Mikael C. Rechtsman & Julia M. Zeuner & Yonatan Plotnik & Yaakov Lumer & Daniel Podolsky & Felix Dreisow & Stefan Nolte & Mordechai Segev & Alexander Szameit, 2013. "Photonic Floquet topological insulators," Nature, Nature, vol. 496(7444), pages 196-200, April.
    5. Polina V. Kapitanova & Pavel Ginzburg & Francisco J. Rodríguez-Fortuño & Dmitry S. Filonov & Pavel M. Voroshilov & Pavel A. Belov & Alexander N. Poddubny & Yuri S. Kivshar & Gregory A. Wurtz & Anatoly, 2014. "Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    6. Maxim A. Gorlach & Xiang Ni & Daria A. Smirnova & Dmitry Korobkin & Dmitry Zhirihin & Alexey P. Slobozhanyuk & Pavel A. Belov & Andrea Alù & Alexander B. Khanikaev, 2018. "Far-field probing of leaky topological states in all-dielectric metasurfaces," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Ertugrul Cubukcu & Koray Aydin & Ekmel Ozbay & Stavroula Foteinopoulou & Costas M. Soukoulis, 2003. "Negative refraction by photonic crystals," Nature, Nature, vol. 423(6940), pages 604-605, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    11. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    13. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Shengjie Wu & Wange Song & Jiacheng Sun & Jian Li & Zhiyuan Lin & Xuanyu Liu & Shining Zhu & Tao Li, 2024. "Approaching the adiabatic infimum of topological pumps on thin-film lithium niobate waveguides," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    16. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    17. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Malomed, B.A., 2022. "Multidimensional dissipative solitons and solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38325-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.