IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26835-2.html
   My bibliography  Save this article

Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D

Author

Listed:
  • Antonia Grauel

    (Albert-Ludwigs-Universität Freiburg)

  • Jan Kägi

    (Albert-Ludwigs-Universität Freiburg)

  • Tim Rasmussen

    (Julius-Maximilians-Universität Würzburg)

  • Iryna Makarchuk

    (UMR 7140 CMC, Université de Strasbourg, CNRS)

  • Sabrina Oppermann

    (Albert-Ludwigs-Universität Freiburg)

  • Aurélien F. A. Moumbock

    (Albert-Ludwigs-Universität Freiburg)

  • Daniel Wohlwend

    (Albert-Ludwigs-Universität Freiburg)

  • Rolf Müller

    (Helmholtz Institute for Pharmaceutical Research Saarland
    Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University)

  • Frederic Melin

    (UMR 7140 CMC, Université de Strasbourg, CNRS)

  • Stefan Günther

    (Albert-Ludwigs-Universität Freiburg)

  • Petra Hellwig

    (UMR 7140 CMC, Université de Strasbourg, CNRS)

  • Bettina Böttcher

    (Julius-Maximilians-Universität Würzburg)

  • Thorsten Friedrich

    (Albert-Ludwigs-Universität Freiburg)

Abstract

Cytochrome bd quinol:O2 oxidoreductases are respiratory terminal oxidases so far only identified in prokaryotes, including several pathogenic bacteria. Escherichia coli contains two bd oxidases of which only the bd-I type is structurally characterized. Here, we report the structure of the Escherichia coli cytochrome bd-II type oxidase with the bound inhibitor aurachin D as obtained by electron cryo-microscopy at 3 Å resolution. The oxidase consists of subunits AppB, C and X that show an architecture similar to that of bd-I. The three heme cofactors are found in AppC, while AppB is stabilized by a structural ubiquinone-8 at the homologous positions. A fourth subunit present in bd-I is lacking in bd-II. Accordingly, heme b595 is exposed to the membrane but heme d embedded within the protein and showing an unexpectedly high redox potential is the catalytically active centre. The structure of the Q-loop is fully resolved, revealing the specific aurachin binding.

Suggested Citation

  • Antonia Grauel & Jan Kägi & Tim Rasmussen & Iryna Makarchuk & Sabrina Oppermann & Aurélien F. A. Moumbock & Daniel Wohlwend & Rolf Müller & Frederic Melin & Stefan Günther & Petra Hellwig & Bettina Bö, 2021. "Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26835-2
    DOI: 10.1038/s41467-021-26835-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26835-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26835-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adar Sonn-Segev & Katarina Belacic & Tatyana Bodrug & Gavin Young & Ryan T. VanderLinden & Brenda A. Schulman & Johannes Schimpf & Thorsten Friedrich & Phat Vinh Dip & Thomas U. Schwartz & Benedikt Ba, 2020. "Quantifying the heterogeneity of macromolecular machines by mass photometry," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Weiwei Wang & Yan Gao & Yanting Tang & Xiaoting Zhou & Yuezheng Lai & Shan Zhou & Yuying Zhang & Xiuna Yang & Fengjiang Liu & Luke W. Guddat & Quan Wang & Zihe Rao & Hongri Gong, 2021. "Cryo-EM structure of mycobacterial cytochrome bd reveals two oxygen access channels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathryn H. Gunn & Saskia B. Neher, 2023. "Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Vera M. Kissling & Giordano Reginato & Eliana Bianco & Kristina Kasaciunaite & Janny Tilma & Gea Cereghetti & Natalie Schindler & Sung Sik Lee & Raphaël Guérois & Brian Luke & Ralf Seidel & Petr Cejka, 2022. "Mre11-Rad50 oligomerization promotes DNA double-strand break repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Luís António Menezes Carreira & Dobromir Szadkowski & Stefano Lometto & Georg. K. A. Hochberg & Lotte Søgaard-Andersen, 2023. "Molecular basis and design principles of switchable front-rear polarity and directional migration in Myxococcus xanthus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Xiuling Wu & Yanhe Zhao & Hong Zhang & Wendi Yang & Jinbo Yang & Lifang Sun & Meiqin Jiang & Qin Wang & Qianchao Wang & Xianren Ye & Xuewu Zhang & Yunkun Wu, 2023. "Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. John C. K. Wang & Hannah T. Baddock & Amirhossein Mafi & Ian T. Foe & Matthew Bratkowski & Ting-Yu Lin & Zena D. Jensvold & Magdalena Preciado López & David Stokoe & Dan Eaton & Qi Hao & Aaron H. Nile, 2024. "Structure of the p53 degradation complex from HPV16," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Elena Ethel Vidal-Calvo & Anne Martin-Salazar & Swati Choudhary & Robert Dagil & Sai Sundar Rajan Raghavan & Lara Duvnjak & Mie Anemone Nordmaj & Thomas Mandel Clausen & Ann Skafte & Jan Oberkofler & , 2024. "Tumor-agnostic cancer therapy using antibodies targeting oncofetal chondroitin sulfate," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Marios G. Koliopoulos & Reyhan Muhammad & Theodoros I. Roumeliotis & Fabienne Beuron & Jyoti S. Choudhary & Claudio Alfieri, 2022. "Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Georg Krainer & Raphael P. B. Jacquat & Matthias M. Schneider & Timothy J. Welsh & Jieyuan Fan & Quentin A. E. Peter & Ewa A. Andrzejewska & Greta Šneiderienė & Magdalena A. Czekalska & Hannes Ausserw, 2024. "Single-molecule digital sizing of proteins in solution," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Jithesh Kottur & Radhika Malik & Aneel K. Aggarwal, 2024. "Nucleic acid mediated activation of a short prokaryotic Argonaute immune system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Tomoki Tamai & Giordano Reginato & Ryusei Ojiri & Issei Morita & Alexandra Avrutis & Petr Cejka & Miki Shinohara & Katsunori Sugimoto, 2024. "Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Hugo Gizardin-Fredon & Paulo E. Santo & Marie-Eve Chagot & Bruno Charpentier & Tiago M. Bandeiras & Xavier Manival & Oscar Hernandez-Alba & Sarah Cianférani, 2024. "Denaturing mass photometry for rapid optimization of chemical protein-protein cross-linking reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26835-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.