IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38241-x.html
   My bibliography  Save this article

Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis

Author

Listed:
  • Alia M. Obeidat

    (Rush University Medical Center)

  • Matthew J. Wood

    (Rush University Medical Center)

  • Natalie S. Adamczyk

    (Rush University Medical Center)

  • Shingo Ishihara

    (Rush University Medical Center)

  • Jun Li

    (Rush University Medical Center)

  • Lai Wang

    (Rush University Medical Center)

  • Dongjun Ren

    (Northwestern University)

  • David A. Bennett

    (Rush University Medical Center)

  • Richard J. Miller

    (Northwestern University)

  • Anne-Marie Malfait

    (Rush University Medical Center)

  • Rachel E. Miller

    (Rush University Medical Center)

Abstract

Non-opioid targets are needed for addressing osteoarthritis pain, which is mechanical in nature and associated with daily activities such as walking and climbing stairs. Piezo2 has been implicated in the development of mechanical pain, but the mechanisms by which this occurs remain poorly understood, including the role of nociceptors. Here we show that nociceptor-specific Piezo2 conditional knock-out mice were protected from mechanical sensitization associated with inflammatory joint pain in female mice, joint pain associated with osteoarthritis in male mice, as well as both knee swelling and joint pain associated with repeated intra-articular injection of nerve growth factor in male mice. Single cell RNA sequencing of mouse lumbar dorsal root ganglia and in situ hybridization of mouse and human lumbar dorsal root ganglia revealed that a subset of nociceptors co-express Piezo2 and Ntrk1 (the gene that encodes the nerve growth factor receptor TrkA). These results suggest that nerve growth factor-mediated sensitization of joint nociceptors, which is critical for osteoarthritic pain, is also dependent on Piezo2, and targeting Piezo2 may represent a therapeutic option for osteoarthritis pain control.

Suggested Citation

  • Alia M. Obeidat & Matthew J. Wood & Natalie S. Adamczyk & Shingo Ishihara & Jun Li & Lai Wang & Dongjun Ren & David A. Bennett & Richard J. Miller & Anne-Marie Malfait & Rachel E. Miller, 2023. "Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38241-x
    DOI: 10.1038/s41467-023-38241-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38241-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38241-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N Eijkelkamp & J.E. Linley & J.M. Torres & L. Bee & A.H. Dickenson & M. Gringhuis & M.S. Minett & G.S. Hong & E. Lee & U. Oh & Y. Ishikawa & F.J. Zwartkuis & J.J. Cox & J.N. Wood, 2013. "A role for Piezo2 in EPAC1-dependent mechanical allodynia," Nature Communications, Nature, vol. 4(1), pages 1-13, June.
    2. Luis O. Romero & Rebeca Caires & Alec R. Nickolls & Alexander T. Chesler & Julio F. Cordero-Morales & Valeria Vásquez, 2020. "A dietary fatty acid counteracts neuronal mechanical sensitization," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Sanjeev S. Ranade & Seung-Hyun Woo & Adrienne E. Dubin & Rabih A. Moshourab & Christiane Wetzel & Matt Petrus & Jayanti Mathur & Valérie Bégay & Bertrand Coste & James Mainquist & A. J. Wilson & Allai, 2014. "Piezo2 is the major transducer of mechanical forces for touch sensation in mice," Nature, Nature, vol. 516(7529), pages 121-125, December.
    4. Luis O. Romero & Rebeca Caires & Alec R. Nickolls & Alexander T. Chesler & Julio F. Cordero-Morales & Valeria Vásquez, 2020. "Publisher Correction: A dietary fatty acid counteracts neuronal mechanical sensitization," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    5. Lijun Wang & Xiuling You & Sutada Lotinun & Lingli Zhang & Nan Wu & Weiguo Zou, 2020. "Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengyu Yin & Boyu Liu & Zishan Dong & Sai Shi & Chenxing Peng & Yushuang Pan & Xiaochen Bi & Huimin Nie & Yunwen Zhang & Yan Tai & Qimiao Hu & Xuan Wang & Xiaomei Shao & Hailong An & Jianqiao Fang & , 2024. "CXCL5 activates CXCR2 in nociceptive sensory neurons to drive joint pain and inflammation in experimental gouty arthritis," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis O. Romero & Rebeca Caires & A. Kaitlyn Victor & Juanma Ramirez & Francisco J. Sierra-Valdez & Patrick Walsh & Vincent Truong & Jungsoo Lee & Ugo Mayor & Lawrence T. Reiter & Valeria Vásquez & Jul, 2023. "Linoleic acid improves PIEZO2 dysfunction in a mouse model of Angelman Syndrome," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Clement Verkest & Irina Schaefer & Timo A. Nees & Na Wang & Juri M. Jegelka & Francisco J. Taberner & Stefan G. Lechner, 2022. "Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Matthew Gabrielle & Yevgen Yudin & Yujue Wang & Xiaoyang Su & Tibor Rohacs, 2024. "Phosphatidic acid is an endogenous negative regulator of PIEZO2 channels and mechanical sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Jonathan Madar & Namrata Tiwari & Cristina Smith & Divya Sharma & Shanwei Shen & Alsiddig Elmahdi & Liya Y. Qiao, 2023. "Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Julia Ojeda-Alonso & Laura Calvo-Enrique & Ricardo Paricio-Montesinos & Rakesh Kumar & Ming-Dong Zhang & James F. A. Poulet & Patrik Ernfors & Gary R. Lewin, 2024. "Sensory Schwann cells set perceptual thresholds for touch and selectively regulate mechanical nociception," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Amandeep Kaur & Madhu & Alok Sharma & Kashmir Singh & Santosh Kumar Upadhyay, 2023. "Exploration of Piezo Channels in Bread Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    8. Martina Nicoletti & Letizia Chiodo & Alessandro Loppini, 2021. "Biophysics and Modeling of Mechanotransduction in Neurons: A Review," Mathematics, MDPI, vol. 9(4), pages 1-32, February.
    9. Maria Dzamukova & Tobias M. Brunner & Jadwiga Miotla-Zarebska & Frederik Heinrich & Laura Brylka & Mir-Farzin Mashreghi & Anjali Kusumbe & Ralf Kühn & Thorsten Schinke & Tonia L. Vincent & Max Löhning, 2022. "Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Mayank Gautam & Akihiro Yamada & Ayaka I. Yamada & Qinxue Wu & Kim Kridsada & Jennifer Ling & Huasheng Yu & Peter Dong & Minghong Ma & Jianguo Gu & Wenqin Luo, 2024. "Distinct local and global functions of mouse Aβ low-threshold mechanoreceptors in mechanical nociception," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Hai-Bo Zhang & Xiao-Bao Ding & Jie Jin & Wen-Ping Guo & Qiao-Lei Yang & Peng-Cheng Chen & Heng Yao & Li Ruan & Yu-Tian Tao & Xin Chen, 2022. "Predicted mouse interactome and network-based interpretation of differentially expressed genes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
    13. Pei Wang & Katharine K. Miller & Enqi He & Siddhant S. Dhawan & Christopher L. Cunningham & Nicolas Grillet, 2024. "LOXHD1 is indispensable for maintaining TMC1 auditory mechanosensitive channels at the site of force transmission," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    14. Francisco Andrés Peralta & Mélaine Balcon & Adeline Martz & Deniza Biljali & Federico Cevoli & Benoit Arnould & Antoine Taly & Thierry Chataigneau & Thomas Grutter, 2023. "Optical control of PIEZO1 channels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Gregory J Gerling & Lingtian Wan & Benjamin U Hoffman & Yuxiang Wang & Ellen A Lumpkin, 2018. "Computation predicts rapidly adapting mechanotransduction currents cannot account for tactile encoding in Merkel cell-neurite complexes," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38241-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.