IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54362-3.html
   My bibliography  Save this article

PIEZO acts in an intestinal valve to regulate swallowing in C. elegans

Author

Listed:
  • Yeon-Ji Park

    (DGIST)

  • Jihye Yeon

    (DGIST)

  • Jihye Cho

    (DGIST)

  • Do-Young Kim

    (DGIST)

  • Xiaofei Bai

    (University of Florida)

  • Yuna Oh

    (Korea Institute of Science and Technology (KIST))

  • Jimin Kim

    (DGIST)

  • HoJin Nam

    (DGIST)

  • Hyeonjeong Hwang

    (DGIST)

  • Woojung Heo

    (DGIST)

  • Jinmahn Kim

    (DGIST)

  • Seoyoung Jun

    (DGIST)

  • Kyungeun Lee

    (Korea Institute of Science and Technology (KIST))

  • KyeongJin Kang

    (KBRI (Korea Brain Research Institute))

  • Kyuhyung Kim

    (DGIST
    KBRI (Korea Brain Research Institute))

Abstract

Sensations of the internal state of the body play crucial roles in regulating the physiological processes and maintaining homeostasis of an organism. However, our understanding of how internal signals are sensed, processed, and integrated to generate appropriate biological responses remains limited. Here, we show that the C. elegans PIEZO channel, encoded by pezo-1, regulates food movement in the intestine by detecting food accumulation in the anterior part of the intestinal lumen, thereby triggering rhythmical movement of the pharynx, referred to as the pharyngeal plunge. pezo-1 deletion mutants exhibit defects in the pharyngeal plunge, which is rescued by PEZO-1 or mouse PIEZO1 expression, but not by PIEZO2, in a single isolated non-neuronal tissue of the digestive tract, the pharyngeal-intestinal valve. Genetic ablation or optogenetic activation of this valve inhibits or induces the pharyngeal plunge, respectively. Moreover, pressure built in the anterior lumen of the intestine results in a pezo-1-dependent pharyngeal plunge, which is driven by head muscle contraction. These findings illustrate how interoceptive processes in a digestive organ regulate swallowing through the PIEZO channel, providing insights into how interoception coordinates ingestive processes in higher animals, including humans.

Suggested Citation

  • Yeon-Ji Park & Jihye Yeon & Jihye Cho & Do-Young Kim & Xiaofei Bai & Yuna Oh & Jimin Kim & HoJin Nam & Hyeonjeong Hwang & Woojung Heo & Jinmahn Kim & Seoyoung Jun & Kyungeun Lee & KyeongJin Kang & Kyu, 2024. "PIEZO acts in an intestinal valve to regulate swallowing in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54362-3
    DOI: 10.1038/s41467-024-54362-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54362-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54362-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Li & Bing Hou & Sarka Tumova & Katsuhiko Muraki & Alexander Bruns & Melanie J. Ludlow & Alicia Sedo & Adam J. Hyman & Lynn McKeown & Richard S. Young & Nadira Y. Yuldasheva & Yasser Majeed & Lesl, 2014. "Piezo1 integration of vascular architecture with physiological force," Nature, Nature, vol. 515(7526), pages 279-282, November.
    2. Sanjeev S. Ranade & Seung-Hyun Woo & Adrienne E. Dubin & Rabih A. Moshourab & Christiane Wetzel & Matt Petrus & Jayanti Mathur & Valérie Bégay & Bertrand Coste & James Mainquist & A. J. Wilson & Allai, 2014. "Piezo2 is the major transducer of mechanical forces for touch sensation in mice," Nature, Nature, vol. 516(7529), pages 121-125, December.
    3. Jingpeng Ge & Wanqiu Li & Qiancheng Zhao & Ningning Li & Maofei Chen & Peng Zhi & Ruochong Li & Ning Gao & Bailong Xiao & Maojun Yang, 2015. "Architecture of the mammalian mechanosensitive Piezo1 channel," Nature, Nature, vol. 527(7576), pages 64-69, November.
    4. Kara L. Marshall & Dimah Saade & Nima Ghitani & Adam M. Coombs & Marcin Szczot & Jason Keller & Tracy Ogata & Ihab Daou & Lisa T. Stowers & Carsten G. Bönnemann & Alexander T. Chesler & Ardem Patapout, 2020. "PIEZO2 in sensory neurons and urothelial cells coordinates urination," Nature, Nature, vol. 588(7837), pages 290-295, December.
    5. Keiko Nonomura & Seung-Hyun Woo & Rui B. Chang & Astrid Gillich & Zhaozhu Qiu & Allain G. Francisco & Sanjeev S. Ranade & Stephen D. Liberles & Ardem Patapoutian, 2017. "Piezo2 senses airway stretch and mediates lung inflation-induced apnoea," Nature, Nature, vol. 541(7636), pages 176-181, January.
    6. Michael Hendricks & Heonick Ha & Nicolas Maffey & Yun Zhang, 2012. "Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement," Nature, Nature, vol. 487(7405), pages 99-103, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Madar & Namrata Tiwari & Cristina Smith & Divya Sharma & Shanwei Shen & Alsiddig Elmahdi & Liya Y. Qiao, 2023. "Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Clement Verkest & Irina Schaefer & Timo A. Nees & Na Wang & Juri M. Jegelka & Francisco J. Taberner & Stefan G. Lechner, 2022. "Intrinsically disordered intracellular domains control key features of the mechanically-gated ion channel PIEZO2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Amandeep Kaur & Madhu & Alok Sharma & Kashmir Singh & Santosh Kumar Upadhyay, 2023. "Exploration of Piezo Channels in Bread Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    5. Haoqing Jerry Wang & Yao Wang & Seyed Sajad Mirjavadi & Tomas Andersen & Laura Moldovan & Parham Vatankhah & Blake Russell & Jasmine Jin & Zijing Zhou & Qing Li & Charles D. Cox & Qian Peter Su & Lini, 2024. "Microscale geometrical modulation of PIEZO1 mediated mechanosensing through cytoskeletal redistribution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Sara Baratchi & Habiba Danish & Chanly Chheang & Ying Zhou & Angela Huang & Austin Lai & Manijeh Khanmohammadi & Kylie M. Quinn & Khashayar Khoshmanesh & Karlheinz Peter, 2024. "Piezo1 expression in neutrophils regulates shear-induced NETosis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jiayu Liu & Chuanrong Zhao & Xue Xiao & Aohan Li & Yueqi Liu & Jianan Zhao & Linwei Fan & Zhenhui Liang & Wei Pang & Weijuan Yao & Wei Li & Jing Zhou, 2023. "Endothelial discoidin domain receptor 1 senses flow to modulate YAP activation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Tobias Clark & Vera Hapiak & Mitchell Oakes & Holly Mills & Richard Komuniecki, 2018. "Monoamines differentially modulate neuropeptide release from distinct sites within a single neuron pair," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-22, May.
    10. Mayank Gautam & Akihiro Yamada & Ayaka I. Yamada & Qinxue Wu & Kim Kridsada & Jennifer Ling & Huasheng Yu & Peter Dong & Minghong Ma & Jianguo Gu & Wenqin Luo, 2024. "Distinct local and global functions of mouse Aβ low-threshold mechanoreceptors in mechanical nociception," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Luis O. Romero & Rebeca Caires & A. Kaitlyn Victor & Juanma Ramirez & Francisco J. Sierra-Valdez & Patrick Walsh & Vincent Truong & Jungsoo Lee & Ugo Mayor & Lawrence T. Reiter & Valeria Vásquez & Jul, 2023. "Linoleic acid improves PIEZO2 dysfunction in a mouse model of Angelman Syndrome," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Sine Yaganoglu & Konstantinos Kalyviotis & Christina Vagena-Pantoula & Dörthe Jülich & Benjamin M. Gaub & Maaike Welling & Tatiana Lopes & Dariusz Lachowski & See Swee Tang & Armando Del Rio Hernandez, 2023. "Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Matthew Gabrielle & Yevgen Yudin & Yujue Wang & Xiaoyang Su & Tibor Rohacs, 2024. "Phosphatidic acid is an endogenous negative regulator of PIEZO2 channels and mechanical sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Francisco Andrés Peralta & Mélaine Balcon & Adeline Martz & Deniza Biljali & Federico Cevoli & Benoit Arnould & Antoine Taly & Thierry Chataigneau & Thomas Grutter, 2023. "Optical control of PIEZO1 channels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Alia M. Obeidat & Matthew J. Wood & Natalie S. Adamczyk & Shingo Ishihara & Jun Li & Lai Wang & Dongjun Ren & David A. Bennett & Richard J. Miller & Anne-Marie Malfait & Rachel E. Miller, 2023. "Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Julia Ojeda-Alonso & Laura Calvo-Enrique & Ricardo Paricio-Montesinos & Rakesh Kumar & Ming-Dong Zhang & James F. A. Poulet & Patrik Ernfors & Gary R. Lewin, 2024. "Sensory Schwann cells set perceptual thresholds for touch and selectively regulate mechanical nociception," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Chenxi Lin & Yuxin Shan & Zhongyi Wang & Hui Peng & Rong Li & Pingzhou Wang & Junyan He & Weiwei Shen & Zhengxing Wu & Min Guo, 2024. "Molecular and circuit mechanisms underlying avoidance of rapid cooling stimuli in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Martina Nicoletti & Letizia Chiodo & Alessandro Loppini, 2021. "Biophysics and Modeling of Mechanotransduction in Neurons: A Review," Mathematics, MDPI, vol. 9(4), pages 1-32, February.
    19. Xin Rui Lim & Mohammad M. Abd-Alhaseeb & Michael Ippolito & Masayo Koide & Amanda J. Senatore & Curtis Plante & Ashwini Hariharan & Nick Weir & Thomas A. Longden & Kathryn A. Laprade & James M. Staffo, 2024. "Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Yingying Ye & Mohammad Barghouth & Haiqiang Dou & Cheng Luan & Yongzhi Wang & Alexandros Karagiannopoulos & Xiaoping Jiang & Ulrika Krus & Malin Fex & Quan Zhang & Lena Eliasson & Patrik Rorsman & Enm, 2022. "A critical role of the mechanosensor PIEZO1 in glucose-induced insulin secretion in pancreatic β-cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54362-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.