IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47640-7.html
   My bibliography  Save this article

CXCL5 activates CXCR2 in nociceptive sensory neurons to drive joint pain and inflammation in experimental gouty arthritis

Author

Listed:
  • Chengyu Yin

    (Zhejiang Chinese Medical University)

  • Boyu Liu

    (Zhejiang Chinese Medical University)

  • Zishan Dong

    (Hebei Medical University)

  • Sai Shi

    (Tianjin University)

  • Chenxing Peng

    (the Second Hospital of Hebei Medical University)

  • Yushuang Pan

    (Zhejiang Chinese Medical University)

  • Xiaochen Bi

    (Zhejiang Chinese Medical University)

  • Huimin Nie

    (Zhejiang Chinese Medical University)

  • Yunwen Zhang

    (Zhejiang Chinese Medical University)

  • Yan Tai

    (Zhejiang Chinese Medical University)

  • Qimiao Hu

    (Zhejiang Chinese Medical University)

  • Xuan Wang

    (The Second Hospital of Hebei Medical University)

  • Xiaomei Shao

    (Zhejiang Chinese Medical University)

  • Hailong An

    (Hebei University of Technology)

  • Jianqiao Fang

    (Zhejiang Chinese Medical University)

  • Chuan Wang

    (Hebei Medical University)

  • Boyi Liu

    (Zhejiang Chinese Medical University)

Abstract

Gouty arthritis evokes joint pain and inflammation. Mechanisms driving gout pain and inflammation remain incompletely understood. Here we show that CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to drive gout pain and inflammation. CXCL5 expression was increased in ankle joints of gout arthritis model mice, whereas CXCR2 showed expression in joint-innervating sensory neurons. CXCL5 activates CXCR2 expressed on nociceptive sensory neurons to trigger TRPA1 activation, resulting in hyperexcitability and pain. Neuronal CXCR2 coordinates with neutrophilic CXCR2 to contribute to CXCL5-induced neutrophil chemotaxis via triggering CGRP- and substance P-mediated vasodilation and plasma extravasation. Neuronal Cxcr2 deletion ameliorates joint pain, neutrophil infiltration and gait impairment in model mice. We confirmed CXCR2 expression in human dorsal root ganglion neurons and CXCL5 level upregulation in serum from male patients with gouty arthritis. Our study demonstrates CXCL5-neuronal CXCR2-TRPA1 axis contributes to gouty arthritis pain, neutrophil influx and inflammation that expands our knowledge of immunomodulation capability of nociceptive sensory neurons.

Suggested Citation

  • Chengyu Yin & Boyu Liu & Zishan Dong & Sai Shi & Chenxing Peng & Yushuang Pan & Xiaochen Bi & Huimin Nie & Yunwen Zhang & Yan Tai & Qimiao Hu & Xuan Wang & Xiaomei Shao & Hailong An & Jianqiao Fang & , 2024. "CXCL5 activates CXCR2 in nociceptive sensory neurons to drive joint pain and inflammation in experimental gouty arthritis," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47640-7
    DOI: 10.1038/s41467-024-47640-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47640-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47640-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anya Topiwala & Kulveer Mankia & Steven Bell & Alastair Webb & Klaus P. Ebmeier & Isobel Howard & Chaoyue Wang & Fidel Alfaro-Almagro & Karla Miller & Stephen Burgess & Stephen Smith & Thomas E. Nicho, 2023. "Association of gout with brain reserve and vulnerability to neurodegenerative disease," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jianhua Zhao & John V. Lin King & Candice E. Paulsen & Yifan Cheng & David Julius, 2020. "Irritant-evoked activation and calcium modulation of the TRPA1 receptor," Nature, Nature, vol. 585(7823), pages 141-145, September.
    3. Alia M. Obeidat & Matthew J. Wood & Natalie S. Adamczyk & Shingo Ishihara & Jun Li & Lai Wang & Dongjun Ren & David A. Bennett & Richard J. Miller & Anne-Marie Malfait & Rachel E. Miller, 2023. "Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavanya Moparthi & Viktor Sinica & Vamsi K. Moparthi & Mohamed Kreir & Thibaut Vignane & Milos R. Filipovic & Viktorie Vlachova & Peter M. Zygmunt, 2022. "The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Marc Duque & Corinne A. Lee-Kubli & Yusuf Tufail & Uri Magaram & Janki Patel & Ahana Chakraborty & Jose Mendoza Lopez & Eric Edsinger & Aditya Vasan & Rani Shiao & Connor Weiss & James Friend & Sreeka, 2022. "Sonogenetic control of mammalian cells using exogenous Transient Receptor Potential A1 channels," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Jongdae Won & Jinsung Kim & Hyeongseop Jeong & Jinhyeong Kim & Shasha Feng & Byeongseok Jeong & Misun Kwak & Juyeon Ko & Wonpil Im & Insuk So & Hyung Ho Lee, 2023. "Molecular architecture of the Gαi-bound TRPC5 ion channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Tuo Ji & Lihua Zheng & Jiale Wu & Mei Duan & Qianwen Liu & Peng Liu & Chen Shen & Jinling Liu & Qinyi Ye & Jiangqi Wen & Jiangli Dong & Tao Wang, 2023. "The thioesterase APT1 is a bidirectional-adjustment redox sensor," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Ruo-Han Hao & Tian-Pei Zhang & Feng Jiang & Jun-Hui Liu & Shan-Shan Dong & Meng Li & Yan Guo & Tie-Lin Yang, 2024. "Revealing brain cell-stratified causality through dissecting causal variants according to their cell-type-specific effects on gene expression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Amy Clarke & Julia Skerjanz & Mathias A. F. Gsell & Patrick Wiedner & Hazel Erkan-Candag & Klaus Groschner & Thomas Stockner & Oleksandra Tiapko, 2024. "PIP2 modulates TRPC3 activity via TRP helix and S4-S5 linker," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Avnika Bali & Samantha P. Schaefer & Isabelle Trier & Alice L. Zhang & Lilian Kabeche & Candice E. Paulsen, 2023. "Molecular mechanism of hyperactivation conferred by a truncation of TRPA1," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47640-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.