IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38215-z.html
   My bibliography  Save this article

A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides

Author

Listed:
  • Kimberly C. Paul

    (UCLA David Geffen School of Medicine)

  • Richard C. Krolewski

    (Brigham and Women’s Hospital and Harvard Medical School
    Harvard University)

  • Edinson Lucumi Moreno

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Jack Blank

    (Prime Medicine, Inc)

  • Kristina M. Holton

    (Harvard University)

  • Tim Ahfeldt

    (Recursion Pharmaceuticals
    Nash Family Department of Neuroscience at Mount Sinai)

  • Melissa Furlong

    (University of Arizona, Mel and Enid Zuckerman College of Public Health)

  • Yu Yu

    (UCLA Center for Health Policy Research)

  • Myles Cockburn

    (University of Southern California)

  • Laura K. Thompson

    (University of Southern California)

  • Alexander Kreymerman

    (Harvard University)

  • Elisabeth M. Ricci-Blair

    (Harvard University)

  • Yu Jun Li

    (Harvard University)

  • Heer B. Patel

    (Harvard University)

  • Richard T. Lee

    (Harvard University
    Harvard Stem Cell Institute
    Brigham and Women’s Hospital and Harvard Medical School)

  • Jeff Bronstein

    (UCLA David Geffen School of Medicine)

  • Lee L. Rubin

    (Harvard University
    Harvard Stem Cell Institute)

  • Vikram Khurana

    (Brigham and Women’s Hospital and Harvard Medical School
    Broad Institute of MIT and Harvard)

  • Beate Ritz

    (UCLA David Geffen School of Medicine
    UCLA Fielding School of Public Health)

Abstract

Parkinson’s disease (PD) is a complex neurodegenerative disease with etiology rooted in genetic vulnerability and environmental factors. Here we combine quantitative epidemiologic study of pesticide exposures and PD with toxicity screening in dopaminergic neurons derived from PD patient induced pluripotent stem cells (iPSCs) to identify Parkinson’s-relevant pesticides. Agricultural records enable investigation of 288 specific pesticides and PD risk in a comprehensive, pesticide-wide association study. We associate long-term exposure to 53 pesticides with PD and identify co-exposure profiles. We then employ a live-cell imaging screening paradigm exposing dopaminergic neurons to 39 PD-associated pesticides. We find that 10 pesticides are directly toxic to these neurons. Further, we analyze pesticides typically used in combinations in cotton farming, demonstrating that co-exposures result in greater toxicity than any single pesticide. We find trifluralin is a driver of toxicity to dopaminergic neurons and leads to mitochondrial dysfunction. Our paradigm may prove useful to mechanistically dissect pesticide exposures implicated in PD risk and guide agricultural policy.

Suggested Citation

  • Kimberly C. Paul & Richard C. Krolewski & Edinson Lucumi Moreno & Jack Blank & Kristina M. Holton & Tim Ahfeldt & Melissa Furlong & Yu Yu & Myles Cockburn & Laura K. Thompson & Alexander Kreymerman & , 2023. "A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38215-z
    DOI: 10.1038/s41467-023-38215-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38215-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38215-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patricia González-Rodríguez & Enrico Zampese & Kristen A. Stout & Jaime N. Guzman & Ema Ilijic & Ben Yang & Tatiana Tkatch & Mihaela A. Stavarache & David L. Wokosin & Lin Gao & Michael G. Kaplitt & J, 2021. "Disruption of mitochondrial complex I induces progressive parkinsonism," Nature, Nature, vol. 599(7886), pages 650-656, November.
    2. Sonja Kriks & Jae-Won Shim & Jinghua Piao & Yosif M. Ganat & Dustin R. Wakeman & Zhong Xie & Luis Carrillo-Reid & Gordon Auyeung & Chris Antonacci & Amanda Buch & Lichuan Yang & M. Flint Beal & D. Jam, 2011. "Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease," Nature, Nature, vol. 480(7378), pages 547-551, December.
    3. Jeehye Park & Sung Bae Lee & Sungkyu Lee & Yongsung Kim & Saera Song & Sunhong Kim & Eunkyung Bae & Jaeseob Kim & Minho Shong & Jin-Man Kim & Jongkyeong Chung, 2006. "Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin," Nature, Nature, vol. 441(7097), pages 1157-1161, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Morrone Parfitt & Elena Coccia & Camille Goldman & Kristen Whitney & Ricardo Reyes & Lily Sarrafha & Ki Hong Nam & Soha Sohail & Drew R. Jones & John F. Crary & Alban Ordureau & Joel Blanchard, 2024. "Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson’s disease model," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Pascale Baden & Maria Jose Perez & Hariam Raji & Federico Bertoli & Stefanie Kalb & María Illescas & Fokion Spanos & Claudio Giuliano & Alessandra Maria Calogero & Marvin Oldrati & Hannah Hebestreit &, 2023. "Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy metabolism," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Yunpeng Huang & Zhihui Wan & Yinglu Tang & Junxuan Xu & Bretton Laboret & Sree Nallamothu & Chenyu Yang & Boxiang Liu & Rongze Olivia Lu & Bingwei Lu & Juan Feng & Jing Cao & Susan Hayflick & Zhihao W, 2022. "Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Vanitha Nithianandam & Hassan Bukhari & Matthew J. Leventhal & Rachel A. Battaglia & Xianjun Dong & Ernest Fraenkel & Mel B. Feany, 2023. "Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Huan Yang & Caroline Sibilla & Raymond Liu & Jina Yun & Bruce A. Hay & Craig Blackstone & David C. Chan & Robert J. Harvey & Ming Guo, 2022. "Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Woori Kim & Mohit Tripathi & Chunhyung Kim & Satyapavan Vardhineni & Young Cha & Shamseer Kulangara Kandi & Melissa Feitosa & Rohit Kholiya & Eric Sah & Anuj Thakur & Yehan Kim & Sanghyeok Ko & Kaiya , 2023. "An optimized Nurr1 agonist provides disease-modifying effects in Parkinson’s disease models," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. A. de Rus Jacquet & M. Alpaugh & H. L. Denis & J. L. Tancredi & M. Boutin & J. Decaestecker & C. Beauparlant & L. Herrmann & M. Saint-Pierre & M. Parent & A. Droit & S. Breton & F. Cicchetti, 2023. "The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Zhanna Alekseenko & José M. Dias & Andrew F. Adler & Mariya Kozhevnikova & Josina Anna Lunteren & Sara Nolbrant & Ashwini Jeggari & Svitlana Vasylovska & Takashi Yoshitake & Jan Kehr & Marie Carlén & , 2022. "Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Su Jin Ham & Heesuk Yoo & Daihn Woo & Da Hyun Lee & Kyu-Sang Park & Jongkyeong Chung, 2023. "PINK1 and Parkin regulate IP3R-mediated ER calcium release," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Thomas M. Goralski & Lindsay Meyerdirk & Libby Breton & Laura Brasseur & Kevin Kurgat & Daniella DeWeerd & Lisa Turner & Katelyn Becker & Marie Adams & Daniel J. Newhouse & Michael X. Henderson, 2024. "Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Blanca Jiménez-Gómez & Patricia Ortega-Sáenz & Lin Gao & Patricia González-Rodríguez & Paula García-Flores & Navdeep Chandel & José López-Barneo, 2023. "Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Federico Miozzo & Eva P. Valencia-Alarcón & Luca Stickley & Michaëla Majcin Dorcikova & Francesco Petrelli & Damla Tas & Nicolas Loncle & Irina Nikonenko & Peter Bou Dib & Emi Nagoshi, 2022. "Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Jenny Zhe Liao & Hyung-lok Chung & Claire Shih & Kenneth Kin Lam Wong & Debdeep Dutta & Zelha Nil & Catherine Grace Burns & Oguz Kanca & Ye-Jin Park & Zhongyuan Zuo & Paul C. Marcogliese & Katherine S, 2024. "Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38215-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.