Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-30777-8
Download full text from publisher
References listed on IDEAS
- Daisuke Doi & Hiroaki Magotani & Tetsuhiro Kikuchi & Megumi Ikeda & Satoe Hiramatsu & Kenji Yoshida & Naoki Amano & Masaki Nomura & Masafumi Umekage & Asuka Morizane & Jun Takahashi, 2020. "Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
- Sonja Kriks & Jae-Won Shim & Jinghua Piao & Yosif M. Ganat & Dustin R. Wakeman & Zhong Xie & Luis Carrillo-Reid & Gordon Auyeung & Chris Antonacci & Amanda Buch & Lichuan Yang & M. Flint Beal & D. Jam, 2011. "Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease," Nature, Nature, vol. 480(7378), pages 547-551, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Muyesier Maimaitili & Muwan Chen & Fabia Febbraro & Ekin Ucuncu & Rachel Kelly & Jonathan Christos Niclis & Josefine Rågård Christiansen & Noëmie Mermet-Joret & Dragos Niculescu & Johanne Lauritsen & , 2023. "Enhanced production of mesencephalic dopaminergic neurons from lineage-restricted human undifferentiated stem cells," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Willayat Y. Wani & Friederike Zunke & Nandkishore R. Belur & Joseph R. Mazzulli, 2024. "The hexosamine biosynthetic pathway rescues lysosomal dysfunction in Parkinson’s disease patient iPSC derived midbrain neurons," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Gustavo Morrone Parfitt & Elena Coccia & Camille Goldman & Kristen Whitney & Ricardo Reyes & Lily Sarrafha & Ki Hong Nam & Soha Sohail & Drew R. Jones & John F. Crary & Alban Ordureau & Joel Blanchard, 2024. "Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson’s disease model," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Marco Luciani & Chiara Garsia & Stefano Beretta & Ingrid Cifola & Clelia Peano & Ivan Merelli & Luca Petiti & Annarita Miccio & Vasco Meneghini & Angela Gritti, 2024. "Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
- Kimberly C. Paul & Richard C. Krolewski & Edinson Lucumi Moreno & Jack Blank & Kristina M. Holton & Tim Ahfeldt & Melissa Furlong & Yu Yu & Myles Cockburn & Laura K. Thompson & Alexander Kreymerman & , 2023. "A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Juliane Tschuck & Vidya Padmanabhan Nair & Ana Galhoz & Carole Zaratiegui & Hin-Man Tai & Gabriele Ciceri & Ina Rothenaigner & Jason Tchieu & Brent R. Stockwell & Lorenz Studer & Daphne S. Cabianca & , 2024. "Suppression of ferroptosis by vitamin A or radical-trapping antioxidants is essential for neuronal development," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- A. de Rus Jacquet & M. Alpaugh & H. L. Denis & J. L. Tancredi & M. Boutin & J. Decaestecker & C. Beauparlant & L. Herrmann & M. Saint-Pierre & M. Parent & A. Droit & S. Breton & F. Cicchetti, 2023. "The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30777-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.