IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30178-x.html
   My bibliography  Save this article

Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism

Author

Listed:
  • Yunpeng Huang

    (Tsinghua University
    University of Chinese Academy of Sciences)

  • Zhihui Wan

    (Tsinghua University
    Capital Medical University, Beijing Maternal and Child Health Care Hospital)

  • Yinglu Tang

    (Southern Methodist University)

  • Junxuan Xu

    (Tsinghua University)

  • Bretton Laboret

    (Southern Methodist University)

  • Sree Nallamothu

    (Southern Methodist University)

  • Chenyu Yang

    (Southern Methodist University)

  • Boxiang Liu

    (Stanford University School of Medicine)

  • Rongze Olivia Lu

    (University of Texas Austin
    University of California San Francisco)

  • Bingwei Lu

    (Stanford University)

  • Juan Feng

    (Tsinghua University)

  • Jing Cao

    (Southern Methodist University)

  • Susan Hayflick

    (Oregon Health and Science University)

  • Zhihao Wu

    (Southern Methodist University)

  • Bing Zhou

    (Tsinghua University
    Chinese Academy of Sciences)

Abstract

Human neurodegenerative disorders often exhibit similar pathologies, suggesting a shared aetiology. Key pathological features of Parkinson’s disease (PD) are also observed in other neurodegenerative diseases. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is caused by mutations in the human PANK2 gene, which catalyzes the initial step of de novo CoA synthesis. Here, we show that fumble (fbl), the human PANK2 homolog in Drosophila, interacts with PINK1 genetically. fbl and PINK1 mutants display similar mitochondrial abnormalities, and overexpression of mitochondrial Fbl rescues PINK1 loss-of-function (LOF) defects. Dietary vitamin B5 derivatives effectively rescue CoA/acetyl-CoA levels and mitochondrial function, reversing the PINK1 deficiency phenotype. Mechanistically, Fbl regulates Ref(2)P (p62/SQSTM1 homolog) by acetylation to promote mitophagy, whereas PINK1 regulates fbl translation by anchoring mRNA molecules to the outer mitochondrial membrane. In conclusion, Fbl (or PANK2) acts downstream of PINK1, regulating CoA/acetyl-CoA metabolism to promote mitophagy, uncovering a potential therapeutic intervention strategy in PD treatment.

Suggested Citation

  • Yunpeng Huang & Zhihui Wan & Yinglu Tang & Junxuan Xu & Bretton Laboret & Sree Nallamothu & Chenyu Yang & Boxiang Liu & Rongze Olivia Lu & Bingwei Lu & Juan Feng & Jing Cao & Susan Hayflick & Zhihao W, 2022. "Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30178-x
    DOI: 10.1038/s41467-022-30178-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30178-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30178-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tohru Kitada & Shuichi Asakawa & Nobutaka Hattori & Hiroto Matsumine & Yasuhiro Yamamura & Shinsei Minoshima & Masayuki Yokochi & Yoshikuni Mizuno & Nobuyoshi Shimizu, 1998. "Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism," Nature, Nature, vol. 392(6676), pages 605-608, April.
    2. Ira E. Clark & Mark W. Dodson & Changan Jiang & Joseph H. Cao & Jun R. Huh & Jae Hong Seol & Soon Ji Yoo & Bruce A. Hay & Ming Guo, 2006. "Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin," Nature, Nature, vol. 441(7097), pages 1162-1166, June.
    3. Zhiyuan You & Wen-Xue Jiang & Ling-Yun Qin & Zhou Gong & Wei Wan & Jin Li & Yusha Wang & Hongtao Zhang & Chao Peng & Tianhua Zhou & Chun Tang & Wei Liu, 2019. "Requirement for p62 acetylation in the aggregation of ubiquitylated proteins under nutrient stress," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Jeehye Park & Sung Bae Lee & Sungkyu Lee & Yongsung Kim & Saera Song & Sunhong Kim & Eunkyung Bae & Jaeseob Kim & Minho Shong & Jin-Man Kim & Jongkyeong Chung, 2006. "Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin," Nature, Nature, vol. 441(7097), pages 1157-1161, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huan Yang & Caroline Sibilla & Raymond Liu & Jina Yun & Bruce A. Hay & Craig Blackstone & David C. Chan & Robert J. Harvey & Ming Guo, 2022. "Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Federico Miozzo & Eva P. Valencia-Alarcón & Luca Stickley & Michaëla Majcin Dorcikova & Francesco Petrelli & Damla Tas & Nicolas Loncle & Irina Nikonenko & Peter Bou Dib & Emi Nagoshi, 2022. "Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Jenny Zhe Liao & Hyung-lok Chung & Claire Shih & Kenneth Kin Lam Wong & Debdeep Dutta & Zelha Nil & Catherine Grace Burns & Oguz Kanca & Ye-Jin Park & Zhongyuan Zuo & Paul C. Marcogliese & Katherine S, 2024. "Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Vanitha Nithianandam & Hassan Bukhari & Matthew J. Leventhal & Rachel A. Battaglia & Xianjun Dong & Ernest Fraenkel & Mel B. Feany, 2023. "Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Xuezhao Feng & Daxiao Sun & Yanchang Li & Jinpei Zhang & Shiyu Liu & Dachuan Zhang & Jingxiang Zheng & Qing Xi & Haisha Liang & Wenkang Zhao & Ying Li & Mengbo Xu & Jiayu He & Tong Liu & Ayshamgul Has, 2023. "Local membrane source gathering by p62 body drives autophagosome formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Su Jin Ham & Heesuk Yoo & Daihn Woo & Da Hyun Lee & Kyu-Sang Park & Jongkyeong Chung, 2023. "PINK1 and Parkin regulate IP3R-mediated ER calcium release," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Myoung Keun Lee & John R Shaffer & Elizabeth J Leslie & Ekaterina Orlova & Jenna C Carlson & Eleanor Feingold & Mary L Marazita & Seth M Weinberg, 2017. "Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    8. Beibei Fu & Yan Xiong & Zhou Sha & Weiwei Xue & Binbin Xu & Shun Tan & Dong Guo & Feng Lin & Lulu Wang & Jianjian Ji & Yang Luo & Xiaoyuan Lin & Haibo Wu, 2023. "SEPTIN2 suppresses an IFN-γ-independent, proinflammatory macrophage activation pathway," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Marc Thilo Figge & Andreas S Reichert & Michael Meyer-Hermann & Heinz D Osiewacz, 2012. "Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-18, June.
    10. Kimberly C. Paul & Richard C. Krolewski & Edinson Lucumi Moreno & Jack Blank & Kristina M. Holton & Tim Ahfeldt & Melissa Furlong & Yu Yu & Myles Cockburn & Laura K. Thompson & Alexander Kreymerman & , 2023. "A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. International Parkinson's Disease Genomics Consortium (IPDGC) & Wellcome Trust Case Control Consortium 2 (WTCCC2), 2011. "A Two-Stage Meta-Analysis Identifies Several New Loci for Parkinson's Disease," PLOS Genetics, Public Library of Science, vol. 7(6), pages 1-9, June.
    12. Michael W Nagle & Jeanne C Latourelle & Adam Labadorf & Alexandra Dumitriu & Tiffany C Hadzi & Thomas G Beach & Richard H Myers, 2016. "The 4p16.3 Parkinson Disease Risk Locus Is Associated with GAK Expression and Genes Involved with the Synaptic Vesicle Membrane," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
    13. Irene H. Flønes & Lilah Toker & Dagny Ann Sandnes & Martina Castelli & Sepideh Mostafavi & Njål Lura & Omnia Shadad & Erika Fernandez-Vizarra & Cèlia Painous & Alexandra Pérez-Soriano & Yaroslau Compt, 2024. "Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Chuong B Do & Joyce Y Tung & Elizabeth Dorfman & Amy K Kiefer & Emily M Drabant & Uta Francke & Joanna L Mountain & Samuel M Goldman & Caroline M Tanner & J William Langston & Anne Wojcicki & Nicholas, 2011. "Web-Based Genome-Wide Association Study Identifies Two Novel Loci and a Substantial Genetic Component for Parkinson's Disease," PLOS Genetics, Public Library of Science, vol. 7(6), pages 1-14, June.
    15. Lene Clausen & Vasileios Voutsinos & Matteo Cagiada & Kristoffer E. Johansson & Martin Grønbæk-Thygesen & Snehal Nariya & Rachel L. Powell & Magnus K. N. Have & Vibe H. Oestergaard & Amelie Stein & Do, 2024. "A mutational atlas for Parkin proteostasis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Syed F. Ali & Zbigniew K. Binienda & Syed Z. Imam, 2011. "Molecular Aspects of Dopaminergic Neurodegeneration: Gene-Environment Interaction in Parkin Dysfunction," IJERPH, MDPI, vol. 8(12), pages 1-12, December.
    17. Linmao Sun & Yufeng Liu & Xinyu Guo & Tianming Cui & Chenghui Wu & Jie Tao & Cheng Cheng & Qi Chu & Changyong Ji & Xianying Li & Hongrui Guo & Shuhang Liang & Huanran Zhou & Shuo Zhou & Kun Ma & Ning , 2024. "Acetylation-dependent regulation of core spliceosome modulates hepatocellular carcinoma cassette exons and sensitivity to PARP inhibitors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30178-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.