IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38203-3.html
   My bibliography  Save this article

Global transportation infrastructure exposure to the change of precipitation in a warmer world

Author

Listed:
  • Kai Liu

    (Beijing Normal University
    Nanjing University of Information Science & Technology)

  • Qianzhi Wang

    (Beijing Normal University
    Beijing Normal University)

  • Ming Wang

    (Beijing Normal University)

  • Elco E. Koks

    (Vrije Universiteit Amsterdam)

Abstract

Transportation infrastructures are generally designed to have multi-decadal service lives. Transport infrastructure design, however, is largely based on historical conditions. Yet, in the face of global warming, we are likely going to experience more intense and frequent extreme events, which may put infrastructure at severe risk. In this study, we comprehensively analyze the exposure of road and railway infrastructure assets to changes in precipitation return periods globally. Under ~2 degrees of warming in mid-century (RCP 8.5 scenario), 43.6% of the global transportation assets are expected to experience at least a 25% decrease in design return period of extreme rainfall (a 33% increase in exceedance probability), which may increase to 69.9% under ~4 degrees of warming by late-21st century. To accommodate for such increases, we propose to incorporate a safety factor for climate change adaptation during the transportation infrastructure design process to ensure transportation assets will maintain their designed risk level in the future. Our results show that a safety factor of 1.2 would work sufficient for most regions of the world for quick design process calculations following the RCP4.5 path.

Suggested Citation

  • Kai Liu & Qianzhi Wang & Ming Wang & Elco E. Koks, 2023. "Global transportation infrastructure exposure to the change of precipitation in a warmer world," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38203-3
    DOI: 10.1038/s41467-023-38203-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38203-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38203-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. E. Koks & J. Rozenberg & C. Zorn & M. Tariverdi & M. Vousdoukas & S. A. Fraser & J. W. Hall & S. Hallegatte, 2019. "A global multi-hazard risk analysis of road and railway infrastructure assets," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    3. Mikhail V. Chester & B. Shane Underwood & Constantine Samaras, 2020. "Keeping infrastructure reliable under climate uncertainty," Nature Climate Change, Nature, vol. 10(6), pages 488-490, June.
    4. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    5. S. Pfahl & P. A. O’Gorman & E. M. Fischer, 2017. "Understanding the regional pattern of projected future changes in extreme precipitation," Nature Climate Change, Nature, vol. 7(6), pages 423-427, June.
    6. N. LeRoy Poff & Casey M. Brown & Theodore E. Grantham & John H. Matthews & Margaret A. Palmer & Caitlin M. Spence & Robert L. Wilby & Marjolijn Haasnoot & Guillermo F. Mendoza & Kathleen C. Dominique , 2016. "Sustainable water management under future uncertainty with eco-engineering decision scaling," Nature Climate Change, Nature, vol. 6(1), pages 25-34, January.
    7. Wenxia Zhang & Tianjun Zhou & Liwei Zou & Lixia Zhang & Xiaolong Chen, 2018. "Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. E. M. Fischer & U. Beyerle & R. Knutti, 2013. "Robust spatially aggregated projections of climate extremes," Nature Climate Change, Nature, vol. 3(12), pages 1033-1038, December.
    9. Célian Colon & Stéphane Hallegatte & Julie Rozenberg, 2021. "Criticality analysis of a country’s transport network via an agent-based supply chain model," Nature Sustainability, Nature, vol. 4(3), pages 209-215, March.
    10. Samora-Arvela, André & Ferrão, João & Ferreira, Jorge & Panagopoulos, Thomas & Vaz, Eric, 2017. "GREEN INFRASTRUCTURE, CLIMATE CHANGE AND SPATIAL PLANNING: Learning lessons across borders," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 5(3), pages 176-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rimjhim Aggarwal & Piergiorgio M Carapella & Ms. Tewodaj Mogues & Julieth C Pico-Mejia, 2024. "Accounting for Climate Risks in Costing the Sustainable Development Goals," IMF Working Papers 2024/049, International Monetary Fund.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ward, Patrick & Shively, Gerald, 2012. "Vulnerability, Income Growth and Climate Change," World Development, Elsevier, vol. 40(5), pages 916-927.
    2. Sarosh Alam Ghausi & Erwin Zehe & Subimal Ghosh & Yinglin Tian & Axel Kleidon, 2024. "Thermodynamically inconsistent extreme precipitation sensitivities across continents driven by cloud-radiative effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
    4. Ziming Chen & Tianjun Zhou & Xiaolong Chen & Wenxia Zhang & Lixia Zhang & Mingna Wu & Liwei Zou, 2022. "Observationally constrained projection of Afro-Asian monsoon precipitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Lei Gu & Jiabo Yin & Pierre Gentine & Hui-Min Wang & Louise J. Slater & Sylvia C. Sullivan & Jie Chen & Jakob Zscheischler & Shenglian Guo, 2023. "Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Massimiliano Mazzanti & Francesco Nicolli & Dario Biolcati Rinaldi, 2012. "Multi-Tasking in the Waste Realm.Theoretical and Empirical Insights on Management and Disposal Performances," EuroEconomica, Danubius University of Galati, issue 5(31), pages 88-101, December.
    7. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    8. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    9. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    10. Song, Tao & Zheng, Tingguo & Tong, Lianjun, 2008. "An empirical test of the environmental Kuznets curve in China: A panel cointegration approach," China Economic Review, Elsevier, vol. 19(3), pages 381-392, September.
    11. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    12. Touitou Mohammed, 2021. "Empirical Analysis of the Environmental Kuznets Curve for Economic Growth and CO2 Emissions in North African Countries," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(2), pages 67-77, June.
    13. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    14. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    15. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    16. Esposito, Piero & Patriarca, Fabrizio & Salvati, Luca, 2018. "Tertiarization and land use change: The case of Italy," Economic Modelling, Elsevier, vol. 71(C), pages 80-86.
    17. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    18. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    19. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    20. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38203-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.