BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination
Author
Abstract
Suggested Citation
DOI: 10.1038/s41586-021-03776-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- George E. Ronson & Katarzyna Starowicz & Elizabeth J. Anthony & Ann Liza Piberger & Lucy C. Clarke & Alexander J. Garvin & Andrew D. Beggs & Celina M. Whalley & Matthew J. Edmonds & James F. J. Beesle, 2023. "Mechanisms of synthetic lethality between BRCA1/2 and 53BP1 deficiencies and DNA polymerase theta targeting," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- John J. Krais & David J. Glass & Ilse Chudoba & Yifan Wang & Wanjuan Feng & Dennis Simpson & Pooja Patel & Zemin Liu & Ryan Neumann-Domer & Robert G. Betsch & Andrea J. Bernhardy & Alice M. Bradbury &, 2023. "Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Jessica L. Kelliher & Melissa L. Folkerts & Kaiyuan V. Shen & Wan Song & Kyle Tengler & Clara M. Stiefel & Seong-Ok Lee & Eloise Dray & Weixing Zhao & Brian Koss & Nicholas R. Pannunzio & Justin W. Le, 2024. "Evolved histone tail regulates 53BP1 recruitment at damaged chromatin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Jian Ma & Yingke Zhou & Penglin Pan & Haixin Yu & Zixi Wang & Lei Lily Li & Bing Wang & Yuqian Yan & Yunqian Pan & Qi Ye & Tianjie Liu & Xiaoyu Feng & Shan Xu & Ke Wang & Xinyang Wang & Yanlin Jian & , 2023. "TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Gaofeng Cui & Maria Victoria Botuyan & Pascal Drané & Qi Hu & Benoît Bragantini & James R. Thompson & David J. Schuller & Alexandre Detappe & Michael T. Perfetti & Lindsey I. James & Stephen V. Frye &, 2023. "An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:596:y:2021:i:7872:d:10.1038_s41586-021-03776-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.