IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25346-4.html
   My bibliography  Save this article

RNF168-mediated localization of BARD1 recruits the BRCA1-PALB2 complex to DNA damage

Author

Listed:
  • John J. Krais

    (Molecular Therapeutics Program, Fox Chase Cancer Center)

  • Yifan Wang

    (Molecular Therapeutics Program, Fox Chase Cancer Center)

  • Pooja Patel

    (Molecular Therapeutics Program, Fox Chase Cancer Center)

  • Jayati Basu

    (Blood Cell Development and Function Program, Fox Chase Cancer Center)

  • Andrea J. Bernhardy

    (Molecular Therapeutics Program, Fox Chase Cancer Center)

  • Neil Johnson

    (Molecular Therapeutics Program, Fox Chase Cancer Center)

Abstract

DNA damage prompts a diverse range of alterations to the chromatin landscape. The RNF168 E3 ubiquitin ligase catalyzes the mono-ubiquitination of histone H2A at lysine (K)13/15 (mUb-H2A), forming a binding module for DNA repair proteins. BRCA1 promotes homologous recombination (HR), in part, through its interaction with PALB2, and the formation of a larger BRCA1-PALB2-BRCA2-RAD51 (BRCA1-P) complex. The mechanism by which BRCA1-P is recruited to chromatin surrounding DNA breaks is unclear. In this study, we reveal that an RNF168-governed signaling pathway is responsible for localizing the BRCA1-P complex to DNA damage. Using mice harboring a Brca1CC (coiled coil) mutation that blocks the Brca1-Palb2 interaction, we uncovered an epistatic relationship between Rnf168− and Brca1CC alleles, which disrupted development, and reduced the efficiency of Palb2-Rad51 localization. Mechanistically, we show that RNF168-generated mUb-H2A recruits BARD1 through a BRCT domain ubiquitin-dependent recruitment motif (BUDR). Subsequently, BARD1-BRCA1 accumulate PALB2-RAD51 at DNA breaks via the CC domain-mediated BRCA1-PALB2 interaction. Together, these findings establish a series of molecular interactions that connect the DNA damage signaling and HR repair machinery.

Suggested Citation

  • John J. Krais & Yifan Wang & Pooja Patel & Jayati Basu & Andrea J. Bernhardy & Neil Johnson, 2021. "RNF168-mediated localization of BARD1 recruits the BRCA1-PALB2 complex to DNA damage," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25346-4
    DOI: 10.1038/s41467-021-25346-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25346-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25346-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John J. Krais & David J. Glass & Ilse Chudoba & Yifan Wang & Wanjuan Feng & Dennis Simpson & Pooja Patel & Zemin Liu & Ryan Neumann-Domer & Robert G. Betsch & Andrea J. Bernhardy & Alice M. Bradbury &, 2023. "Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25346-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.