IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38096-2.html
   My bibliography  Save this article

Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors

Author

Listed:
  • Miaomiao Li

    (New York University)

  • Tao Yao

    (Oak Ridge National Laboratory)

  • Wanru Lin

    (New York University)

  • Will E. Hinckley

    (New York University)

  • Mary Galli

    (Rutgers University)

  • Wellington Muchero

    (Oak Ridge National Laboratory)

  • Andrea Gallavotti

    (Rutgers University)

  • Jin-Gui Chen

    (Oak Ridge National Laboratory)

  • Shao-shan Carol Huang

    (New York University)

Abstract

Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.

Suggested Citation

  • Miaomiao Li & Tao Yao & Wanru Lin & Will E. Hinckley & Mary Galli & Wellington Muchero & Andrea Gallavotti & Jin-Gui Chen & Shao-shan Carol Huang, 2023. "Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38096-2
    DOI: 10.1038/s41467-023-38096-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38096-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38096-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florian Wagner, 2015. "GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-26, November.
    2. Anthony Mathelier & Wyeth W Wasserman, 2013. "The Next Generation of Transcription Factor Binding Site Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-18, September.
    3. Christoph Weiste & Wolfgang Dröge-Laser, 2014. "The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery," Nature Communications, Nature, vol. 5(1), pages 1-12, September.
    4. Elena Baena-González & Filip Rolland & Johan M. Thevelein & Jen Sheen, 2007. "A central integrator of transcription networks in plant stress and energy signalling," Nature, Nature, vol. 448(7156), pages 938-942, August.
    5. Julia Mergner & Martin Frejno & Markus List & Michael Papacek & Xia Chen & Ajeet Chaudhary & Patroklos Samaras & Sandra Richter & Hiromasa Shikata & Maxim Messerer & Daniel Lang & Stefan Altmann & Phi, 2020. "Mass-spectrometry-based draft of the Arabidopsis proteome," Nature, Nature, vol. 579(7799), pages 409-414, March.
    6. Mark Ptashne & Alexander Gann, 1997. "Transcriptional activation by recruitment," Nature, Nature, vol. 386(6625), pages 569-577, April.
    7. Weronika Sikora-Wohlfeld & Marit Ackermann & Eleni G Christodoulou & Kalaimathy Singaravelu & Andreas Beyer, 2013. "Assessing Computational Methods for Transcription Factor Target Gene Identification Based on ChIP-seq Data," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Till D Frank & Aimée M Carmody & Boris N Kholodenko, 2012. "Versatility of Cooperative Transcriptional Activation: A Thermodynamical Modeling Analysis for Greater-Than-Additive and Less-Than-Additive Effects," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-15, April.
    2. Alistair N Boettiger & Peter L Ralph & Steven N Evans, 2011. "Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    3. Karin Vogel & Tobias Bläske & Marie-Kristin Nagel & Christoph Globisch & Shane Maguire & Lorenz Mattes & Christian Gude & Michael Kovermann & Karin Hauser & Christine Peter & Erika Isono, 2022. "Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Inbal Vaknin & Or Willinger & Jonathan Mandl & Hadar Heuberger & Dan Ben-Ami & Yi Zeng & Sarah Goldberg & Yaron Orenstein & Roee Amit, 2024. "A universal system for boosting gene expression in eukaryotic cell-lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Erik Andrews & Yue Wang & Tian Xia & Wenqing Cheng & Chao Cheng, 2017. "Contextual Refinement of Regulatory Targets Reveals Effects on Breast Cancer Prognosis of the Regulome," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    6. Krishanpal Anamika & Àkos Gyenis & Laetitia Poidevin & Olivier Poch & Làszlò Tora, 2012. "RNA Polymerase II Pausing Downstream of Core Histone Genes Is Different from Genes Producing Polyadenylated Transcripts," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    7. Lala M Motlhabi & Gary D Stormo, 2011. "Assessing the Effects of Symmetry on Motif Discovery and Modeling," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    8. Michael E Wall & David A Markowitz & Judah L Rosner & Robert G Martin, 2009. "Model of Transcriptional Activation by MarA in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-11, December.
    9. Saeed Omidi & Mihaela Zavolan & Mikhail Pachkov & Jeremie Breda & Severin Berger & Erik van Nimwegen, 2017. "Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    10. Wen Shi & Yue Liu & Na Zhao & Lianmei Yao & Jinge Li & Min Fan & Bojian Zhong & Ming-Yi Bai & Chao Han, 2024. "Hydrogen peroxide is required for light-induced stomatal opening across different plant species," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. T.J.M. van Dooren, 1998. "The Evolutionary Ecology of Dominance-Recessivity," Working Papers ir98096, International Institute for Applied Systems Analysis.
    12. Yonglun Zeng & Baiying Li & Shuxian Huang & Hongbo Li & Wenhan Cao & Yixuan Chen & Guoyong Liu & Zhenping Li & Chao Yang & Lei Feng & Jiayang Gao & Sze Wan Lo & Jierui Zhao & Jinbo Shen & Yan Guo & Ca, 2023. "The plant unique ESCRT component FREE1 regulates autophagosome closure," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Gabriel Krouk & Daniel Tranchina & Laurence Lejay & Alexis A Cruikshank & Dennis Shasha & Gloria M Coruzzi & Rodrigo A Gutiérrez, 2009. "A Systems Approach Uncovers Restrictions for Signal Interactions Regulating Genome-wide Responses to Nutritional Cues in Arabidopsis," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-12, March.
    14. Chuanzhong Zhang & Hongru Wang & Xiaojie Tian & Xinyan Lin & Yunfei Han & Zhongmin Han & Hanjing Sha & Jia Liu & Jianfeng Liu & Jian Zhang & Qingyun Bu & Jun Fang, 2024. "A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Yoon Keun Cho & Young Cheol Yoon & Hyeonyeong Im & Yeonho Son & Minsu Kim & Abhirup Saha & Cheoljun Choi & Jaewon Lee & Sumin Lee & Jae Hyun Kim & Yun Pyo Kang & Young-Suk Jung & Hong Koo Ha & Je Kyun, 2022. "Adipocyte lysoplasmalogenase TMEM86A regulates plasmalogen homeostasis and protein kinase A-dependent energy metabolism," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Wen Shi & Lingyan Wang & Lianmei Yao & Wei Hao & Chao Han & Min Fan & Wenfei Wang & Ming-Yi Bai, 2022. "Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Rutger Hermsen & Bas Ursem & Pieter Rein ten Wolde, 2010. "Combinatorial Gene Regulation Using Auto-Regulation," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    18. Lea Reuter & Tanja Schmidt & Prabha Manishankar & Christian Throm & Jutta Keicher & Andrea Bock & Irina Droste-Borel & Claudia Oecking, 2021. "Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Ying Liang & Haiyue Xu & Tao Cheng & Yujuan Fu & Hanwei Huang & Wenchang Qian & Junyan Wang & Yuenan Zhou & Pengxu Qian & Yafei Yin & Pengfei Xu & Wei Zou & Baohui Chen, 2022. "Gene activation guided by nascent RNA-bound transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38096-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.