IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003342.html
   My bibliography  Save this article

Assessing Computational Methods for Transcription Factor Target Gene Identification Based on ChIP-seq Data

Author

Listed:
  • Weronika Sikora-Wohlfeld
  • Marit Ackermann
  • Eleni G Christodoulou
  • Kalaimathy Singaravelu
  • Andreas Beyer

Abstract

Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) has great potential for elucidating transcriptional networks, by measuring genome-wide binding of transcription factors (TFs) at high resolution. Despite the precision of these experiments, identification of genes directly regulated by a TF (target genes) is not trivial. Numerous target gene scoring methods have been used in the past. However, their suitability for the task and their performance remain unclear, because a thorough comparative assessment of these methods is still lacking. Here we present a systematic evaluation of computational methods for defining TF targets based on ChIP-seq data. We validated predictions based on 68 ChIP-seq studies using a wide range of genomic expression data and functional information. We demonstrate that peak-to-gene assignment is the most crucial step for correct target gene prediction and propose a parameter-free method performing most consistently across the evaluation tests.Author Summary: Transcription factors (TFs) are the main regulators of gene transcription. Thus, knowing the genes that are targeted by a specific TF is of utmost importance for understanding developmental processes, cellular stress response, or disease etiology. Chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) allows for measuring the genome-wide binding of TFs. Several computational methods have been used for inferring the genes that are targeted by TFs using this binding information, but a thorough evaluation of their performance has not been performed so far. Here we present an assessment of a range of TF-target-calling methods using 68 ChIP-seq datasets. It turns out that the first step of the scoring, the assignment of binding events to genes, is the most important for correctly calling target genes. Our evaluation revealed important performance differences between the target-calling methods, with some simplistic methods exhibiting a particularly poor performance compared to more elaborate scorings. One of the methods is particularly attractive, because it does not require the a priori definition of any parameter — all parameters are ‘learned’ from the data. This and other methods tested were implemented in a freely available software package for future testing and application to other ChIP-seq datasets.

Suggested Citation

  • Weronika Sikora-Wohlfeld & Marit Ackermann & Eleni G Christodoulou & Kalaimathy Singaravelu & Andreas Beyer, 2013. "Assessing Computational Methods for Transcription Factor Target Gene Identification Based on ChIP-seq Data," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-11, November.
  • Handle: RePEc:plo:pcbi00:1003342
    DOI: 10.1371/journal.pcbi.1003342
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003342
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003342&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth G Wilbanks & Marc T Facciotti, 2010. "Evaluation of Algorithm Performance in ChIP-Seq Peak Detection," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik Andrews & Yue Wang & Tian Xia & Wenqing Cheng & Chao Cheng, 2017. "Contextual Refinement of Regulatory Targets Reveals Effects on Breast Cancer Prognosis of the Regulome," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    2. Miaomiao Li & Tao Yao & Wanru Lin & Will E. Hinckley & Mary Galli & Wellington Muchero & Andrea Gallavotti & Jin-Gui Chen & Shao-shan Carol Huang, 2023. "Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caiyan Jia & Matthew B Carson & Yang Wang & Youfang Lin & Hui Lu, 2014. "A New Exhaustive Method and Strategy for Finding Motifs in ChIP-Enriched Regions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-13, January.
    2. Anthony Mathelier & Wyeth W Wasserman, 2013. "The Next Generation of Transcription Factor Binding Site Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-18, September.
    3. Yuzhuo Wang & Chengzhi Zhang & Kai Li, 2022. "A review on method entities in the academic literature: extraction, evaluation, and application," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2479-2520, May.
    4. Timothy Bailey & Pawel Krajewski & Istvan Ladunga & Celine Lefebvre & Qunhua Li & Tao Liu & Pedro Madrigal & Cenny Taslim & Jie Zhang, 2013. "Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-8, November.
    5. Dongjun Chung & Dan Park & Kevin Myers & Jeffrey Grass & Patricia Kiley & Robert Landick & Sündüz Keleş, 2013. "dPeak: High Resolution Identification of Transcription Factor Binding Sites from PET and SET ChIP-Seq Data," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-13, October.
    6. Apratim Mitra & Jiuzhou Song, 2012. "WaveSeq: A Novel Data-Driven Method of Detecting Histone Modification Enrichments Using Wavelets," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    7. Haipeng Xing & Yifan Mo & Will Liao & Michael Q Zhang, 2012. "Genome-Wide Localization of Protein-DNA Binding and Histone Modification by a Bayesian Change-Point Method with ChIP-seq Data," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-12, July.
    8. Tatsunori B Hashimoto & Matthew D Edwards & David K Gifford, 2014. "Universal Count Correction for High-Throughput Sequencing," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-11, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.