IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45089-2.html
   My bibliography  Save this article

Heavy-to-light electron transition enabling real-time spectra detection of charged particles by a biocompatible semiconductor

Author

Listed:
  • Dou Zhao

    (Northwestern Polytechnical University
    The University of Tokyo)

  • Ruiling Gao

    (Shanghai University
    Singapore University of Technology and Design)

  • Wei Cheng

    (Nanjing University of Aeronautics and Astronautics)

  • Mengyao Wen

    (Northwestern Polytechnical University)

  • Xinlei Zhang

    (Shaanxi Normal University)

  • Tomoyuki Yokota

    (The University of Tokyo)

  • Paul Sellin

    (University of Surrey)

  • Shengyuan A. Yang

    (Singapore University of Technology and Design)

  • Li Shang

    (Northwestern Polytechnical University)

  • Chongjian Zhou

    (Northwestern Polytechnical University)

  • Takao Someya

    (The University of Tokyo)

  • Wanqi Jie

    (Northwestern Polytechnical University)

  • Yadong Xu

    (Northwestern Polytechnical University)

Abstract

The current challenge of wearable/implantable personal dosimeters for medical diagnosis and radiotherapy applications is lack of suitable detector materials possessing both excellent detection performance and biocompatibility. Here, we report a solution-grown biocompatible organic single crystalline semiconductor (OSCS), 4-Hydroxyphenylacetic acid (4HPA), achieving real-time spectral detection of charged particles with single-particle sensitivity. Along in-plane direction, two-dimensional anisotropic 4HPA exhibits a large electron drift velocity of 5 × 105 cm s−1 at “radiation-mode” while maintaining a high resistivity of (1.28 ± 0.003) × 1012 Ω·cm at “dark-mode” due to influence of dense π-π overlaps and high-energy L1 level. Therefore, 4HPA detectors exhibit the record spectra detection of charged particles among their organic counterparts, with energy resolution of 36%, (μt)e of (4.91 ± 0.07) × 10−5 cm2 V−1, and detection time down to 3 ms. These detectors also show high X-ray detection sensitivity of 16,612 μC Gyabs−1 cm−3, detection of limit of 20 nGyair s−1, and long-term stability after 690 Gyair irradiation.

Suggested Citation

  • Dou Zhao & Ruiling Gao & Wei Cheng & Mengyao Wen & Xinlei Zhang & Tomoyuki Yokota & Paul Sellin & Shengyuan A. Yang & Li Shang & Chongjian Zhou & Takao Someya & Wanqi Jie & Yadong Xu, 2024. "Heavy-to-light electron transition enabling real-time spectra detection of charged particles by a biocompatible semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45089-2
    DOI: 10.1038/s41467-024-45089-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45089-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45089-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao He & Yanfei Wu & Gabriele D’Avino & Elliot Schmidt & Matthias Stolte & Jérôme Cornil & David Beljonne & P. Paul Ruden & Frank Würthner & C. Daniel Frisbie, 2018. "Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Daniel G. Chica & Yihui He & Kyle M. McCall & Duck Young Chung & Rahmi O. Pak & Giancarlo Trimarchi & Zhifu Liu & Patrick M. De Lurgio & Bruce W. Wessels & Mercouri G. Kanatzidis, 2020. "Direct thermal neutron detection by the 2D semiconductor 6LiInP2Se6," Nature, Nature, vol. 577(7790), pages 346-349, January.
    3. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ying Zhou & Chengbin Fei & Md Aslam Uddin & Liang Zhao & Zhenyi Ni & Jinsong Huang, 2023. "Self-powered perovskite photon-counting detectors," Nature, Nature, vol. 616(7958), pages 712-718, April.
    5. Yunxia Zhang & Yucheng Liu & Zhuo Xu & Haochen Ye & Zhou Yang & Jiaxue You & Ming Liu & Yihui He & Mercouri G. Kanatzidis & Shengzhong (Frank) Liu, 2020. "Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jincong Pang & Haodi Wu & Hao Li & Tong Jin & Jiang Tang & Guangda Niu, 2024. "Reconfigurable perovskite X-ray detector for intelligent imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Robert A. Jagt & Ivona Bravić & Lissa Eyre & Krzysztof Gałkowski & Joanna Borowiec & Kavya Reddy Dudipala & Michał Baranowski & Mateusz Dyksik & Tim W. J. Goor & Theo Kreouzis & Ming Xiao & Adrian Bev, 2023. "Layered BiOI single crystals capable of detecting low dose rates of X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yurou Zhang & Miaoqiang Lyu & Tengfei Qiu & Ekyu Han & Il Ku Kim & Min-Cherl Jung & Yun Hau Ng & Jung-Ho Yun & Lianzhou Wang, 2020. "Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches," Energies, MDPI, vol. 13(16), pages 1-27, August.
    4. Ju-Hyoung Han & Shi-Hyun Seok & Young Ho Jin & Jaeeun Park & Yunju Lee & Haeng Un Yeo & Jong-Ho Back & Yeoseon Sim & Yujin Chae & Jaewon Wang & Geum-Yoon Oh & Wonjoo Lee & Sung Hyun Park & In-Cheol Ba, 2023. "Robust 2D layered MXene matrix–boron carbide hybrid films for neutron radiation shielding," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yi Liu & Yu Ma & Xi Zeng & Haojie Xu & Wuqian Guo & Beibei Wang & Lina Hua & Liwei Tang & Junhua Luo & Zhihua Sun, 2023. "A high-temperature double perovskite molecule-based antiferroelectric with excellent anti-breakdown capacity for energy storage," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Renzhong Zhuang & Songhua Cai & Zengxia Mei & Huili Liang & Ningjiu Zhao & Haoran Mu & Wenzhi Yu & Yan Jiang & Jian Yuan & Shuping Lau & Shiming Deng & Mingyue Han & Peng Jin & Cailin Wang & Guangyu Z, 2023. "Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive X-ray detection," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jingxian Zhong & Dawei Zhou & Qi Bai & Chao Liu & Xinlian Fan & Hehe Zhang & Congzhou Li & Ran Jiang & Peiyi Zhao & Jiaxiao Yuan & Xiaojiao Li & Guixiang Zhan & Hongyu Yang & Jing Liu & Xuefen Song & , 2024. "Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Zihao Song & Xinyuan Du & Xin He & Hanqi Wang & Zhiqiang Liu & Haodi Wu & Hongde Luo & Libo Jin & Ling Xu & Zhiping Zheng & Guangda Niu & Jiang Tang, 2023. "Rheological engineering of perovskite suspension toward high-resolution X-ray flat-panel detector," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Yingjie Tang & Peng Jin & Yan Wang & Dingwei Li & Yitong Chen & Peng Ran & Wei Fan & Kun Liang & Huihui Ren & Xuehui Xu & Rui Wang & Yang (Michael) Yang & Bowen Zhu, 2023. "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45089-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.