IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37956-1.html
   My bibliography  Save this article

Turning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase

Author

Listed:
  • Federica Maschietto

    (Yale University)

  • Uriel N. Morzan

    (International Center for Theoretical Physics)

  • Florentina Tofoleanu

    (Yale University
    National Institutes of Health
    Treeline Biosciences)

  • Aria Gheeraert

    (ENSL, CNRS, Laboratoire de Chimie UMR 5182
    Università di Bologna)

  • Apala Chaudhuri

    (Yale University)

  • Gregory W. Kyro

    (Yale University)

  • Peter Nekrasov

    (Yale University)

  • Bernard Brooks

    (National Institutes of Health)

  • J. Patrick Loria

    (Yale University
    Yale University)

  • Ivan Rivalta

    (ENSL, CNRS, Laboratoire de Chimie UMR 5182
    Università di Bologna)

  • Victor S. Batista

    (Yale University)

Abstract

Allosteric drugs have the potential to revolutionize biomedicine due to their enhanced selectivity and protection against overdosage. However, we need to better understand allosteric mechanisms in order to fully harness their potential in drug discovery. In this study, molecular dynamics simulations and nuclear magnetic resonance spectroscopy are used to investigate how increases in temperature affect allostery in imidazole glycerol phosphate synthase. Results demonstrate that temperature increase triggers a cascade of local amino acid-to-amino acid dynamics that remarkably resembles the allosteric activation that takes place upon effector binding. The differences in the allosteric response elicited by temperature increase as opposed to effector binding are conditional to the alterations of collective motions induced by either mode of activation. This work provides an atomistic picture of temperature-dependent allostery, which could be harnessed to more precisely control enzyme function.

Suggested Citation

  • Federica Maschietto & Uriel N. Morzan & Florentina Tofoleanu & Aria Gheeraert & Apala Chaudhuri & Gregory W. Kyro & Peter Nekrasov & Bernard Brooks & J. Patrick Loria & Ivan Rivalta & Victor S. Batist, 2023. "Turning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37956-1
    DOI: 10.1038/s41467-023-37956-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37956-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37956-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harry G. Saavedra & James O. Wrabl & Jeremy A. Anderson & Jing Li & Vincent J. Hilser, 2018. "Dynamic allostery can drive cold adaptation in enzymes," Nature, Nature, vol. 558(7709), pages 324-328, June.
    2. Jan Philip Wurm & Sihyun Sung & Andrea Christa Kneuttinger & Enrico Hupfeld & Reinhard Sterner & Matthias Wilmanns & Remco Sprangers, 2021. "Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. João P. Pisco & Cesira de Chiara & Kamila J. Pacholarz & Acely Garza-Garcia & Roksana W. Ogrodowicz & Philip A. Walker & Perdita E. Barran & Stephen J. Smerdon & Luiz Pedro S. de Carvalho, 2017. "Uncoupling conformational states from activity in an allosteric enzyme," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    4. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    5. Shaoyong Lu & Xinheng He & Zhao Yang & Zongtao Chai & Shuhua Zhou & Junyan Wang & Ashfaq Ur Rehman & Duan Ni & Jun Pu & Jinpeng Sun & Jian Zhang, 2021. "Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Jian Wang & Abha Jain & Leanna R. McDonald & Craig Gambogi & Andrew L. Lee & Nikolay V. Dokholyan, 2020. "Mapping allosteric communications within individual proteins," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    8. Zenita Adhireksan & Giulia Palermo & Tina Riedel & Zhujun Ma & Reyhan Muhammad & Ursula Rothlisberger & Paul J. Dyson & Curt A. Davey, 2017. "Allosteric cross-talk in chromatin can mediate drug-drug synergy," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    9. Hesam N. Motlagh & James O. Wrabl & Jing Li & Vincent J. Hilser, 2014. "The ensemble nature of allostery," Nature, Nature, vol. 508(7496), pages 331-339, April.
    10. Shiou-Ru Tzeng & Charalampos G. Kalodimos, 2009. "Dynamic activation of an allosteric regulatory protein," Nature, Nature, vol. 462(7271), pages 368-372, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    2. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    3. Matthew A. Cruz & Thomas E. Frederick & Upasana L. Mallimadugula & Sukrit Singh & Neha Vithani & Maxwell I. Zimmerman & Justin R. Porter & Katelyn E. Moeder & Gaya K. Amarasinghe & Gregory R. Bowman, 2022. "A cryptic pocket in Ebola VP35 allosterically controls RNA binding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Pirvu Daniela & Barbuceanu Mircea, 2016. "Recent Contributions Of The Statistical Physics In The Research Of Banking, Stock Exchange And Foreign Exchange Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 85-92, April.
    7. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    8. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    9. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    10. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    11. Yashavantha L. Vishweshwaraiah & Jiaxing Chen & Venkat R. Chirasani & Erdem D. Tabdanov & Nikolay V. Dokholyan, 2021. "Two-input protein logic gate for computation in living cells," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    13. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    14. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    15. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    16. Jonathan Schubert & Andrea Schulze & Chrisostomos Prodromou & Hannes Neuweiler, 2021. "Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    17. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    18. Zhihong Xiao & Jinyin Zha & Xu Yang & Tingting Huang & Shuxin Huang & Qi Liu & Xiaozheng Wang & Jie Zhong & Jianting Zheng & Rubing Liang & Zixin Deng & Jian Zhang & Shuangjun Lin & Shaobo Dai, 2024. "A three-level regulatory mechanism of the aldo-keto reductase subfamily AKR12D," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    20. Atieh Mirshahvalad & Johan Lindholm & Mattias Derlén & Martin Rosvall, 2012. "Significant Communities in Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-7, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37956-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.