IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010348.html
   My bibliography  Save this article

Detecting network communities based on central node selection and expansion

Author

Listed:
  • Zhao, Zhili
  • Zhang, Nana
  • Xie, Jiquan
  • Hu, Ahui
  • Liu, Xupeng
  • Yan, Ruiyi
  • Wan, Li
  • Sun, Yue

Abstract

Community detection aims to uncover the structure of closely connected nodes in complex networks, with applications in various fields such as social networks and biological networks. However, obtaining global information from a network remains a challenging task. Consequently, the study of local community detection has garnered widespread attention. Many existing algorithms for local community detection begin with selecting central nodes as initial communities and then expanding from there. However, the performance of community detection heavily relies on the selection of central nodes, the node updating order, and the community expansion strategy. To address these challenges, this study proposes an enhanced method based on central node selection and expansion (CNSE). Regarding the selection of central nodes, this study employs a voting approach involving three centrality methods, which comprehensively consider different centrality measures to choose the nodes with higher hybrid centrality as central nodes. For the node updating order, this study prioritizes the more important nodes to expedite their convergence process. During the community expansion, label vectors are propagated. This study considers both the similarity of neighbors and the influence of central nodes at different distances. Finally, key nodes are reassessed using community affiliation to ensure the accuracy of community detection. Experimental results on both real-world and synthetic networks demonstrate that CNSE has better performance in terms of normalized mutual information (NMI) and adjusted rand index (ARI).

Suggested Citation

  • Zhao, Zhili & Zhang, Nana & Xie, Jiquan & Hu, Ahui & Liu, Xupeng & Yan, Ruiyi & Wan, Li & Sun, Yue, 2024. "Detecting network communities based on central node selection and expansion," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010348
    DOI: 10.1016/j.chaos.2024.115482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Zhu, Junfang & Ren, Xuezao & Ma, Peijie & Gao, Kun & Wang, Bing-Hong & Zhou, Tao, 2022. "Detecting network communities via greedy expanding based on local superiority index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Fang, Wenyi & Wang, Xin & Liu, Longzhao & Wu, Zhaole & Tang, Shaoting & Zheng, Zhiming, 2022. "Community detection through vector-label propagation algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Michelle Girvan & M. E. J. Newman, 2001. "Community Structure in Social and Biological Networks," Working Papers 01-12-077, Santa Fe Institute.
    6. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    2. Yang, Bo & Li, Xu & Liu, Xiangwei & He, He & Chen, Wei, 2019. "Alternating between consensus and leader selection reveals community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 693-706.
    3. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    4. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    5. Bernat Corominas-Murtra & Benedikt Fuchs & Stefan Thurner, 2014. "Detection of the Elite Structure in a Virtual Multiplex Social System by Means of a Generalised K-Core," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-19, December.
    6. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    7. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    8. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    9. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    10. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    11. Rizman Žalik, Krista & Žalik, Borut, 2014. "A local multiresolution algorithm for detecting communities of unbalanced structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 380-393.
    12. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    13. Giorgio Gronchi & Marco Raglianti & Fabio Giovannelli, 2021. "Network Theory and Switching Behaviors: A User Guide for Analyzing Electronic Records Databases," Future Internet, MDPI, vol. 13(9), pages 1-12, August.
    14. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    15. Shen Wang & Jun Wu & Yutao Zhang, 2018. "Consumer preference–enabled intelligent energy management for smart cities using game theoretic social tie," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    16. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    17. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    18. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    19. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    20. Rawya Zreik & Pierre Latouche & Charles Bouveyron, 2017. "The dynamic random subgraph model for the clustering of evolving networks," Computational Statistics, Springer, vol. 32(2), pages 501-533, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.