IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7709d10.1038_s41586-018-0183-2.html
   My bibliography  Save this article

Dynamic allostery can drive cold adaptation in enzymes

Author

Listed:
  • Harry G. Saavedra

    (Johns Hopkins University
    Johns Hopkins University)

  • James O. Wrabl

    (Johns Hopkins University
    Johns Hopkins University)

  • Jeremy A. Anderson

    (Johns Hopkins University
    Johns Hopkins University)

  • Jing Li

    (Johns Hopkins University
    Johns Hopkins University)

  • Vincent J. Hilser

    (Johns Hopkins University
    Johns Hopkins University)

Abstract

Adaptation of organisms to environmental niches is a hallmark of evolution. One prevalent example is that of thermal adaptation, in which two descendants evolve at different temperature extremes1,2. Underlying the physiological differences between such organisms are changes in enzymes that catalyse essential reactions 3 , with orthologues from each organism undergoing adaptive mutations that preserve similar catalytic rates at their respective physiological temperatures4,5. The sequence changes responsible for these adaptive differences, however, are often at surface-exposed sites distant from the substrate-binding site, leaving the active site of the enzyme structurally unperturbed6,7. How such changes are allosterically propagated to the active site, to modulate activity, is not known. Here we show that entropy-tuning changes can be engineered into distal sites of Escherichia coli adenylate kinase, allowing us to quantitatively assess the role of dynamics in determining affinity, turnover and the role in driving adaptation. The results not only reveal a dynamics-based allosteric tuning mechanism, but also uncover a spatial separation of the control of key enzymatic parameters. Fluctuations in one mobile domain (the LID) control substrate affinity, whereas dynamic attenuation in the other domain (the AMP-binding domain) affects rate-limiting conformational changes that govern enzyme turnover. Dynamics-based regulation may thus represent an elegant, widespread and previously unrealized evolutionary adaptation mechanism that fine-tunes biological function without altering the ground state structure. Furthermore, because rigid-body conformational changes in both domains were thought to be rate limiting for turnover8,9, these adaptation studies reveal a new model for understanding the relationship between dynamics and turnover in adenylate kinase.

Suggested Citation

  • Harry G. Saavedra & James O. Wrabl & Jeremy A. Anderson & Jing Li & Vincent J. Hilser, 2018. "Dynamic allostery can drive cold adaptation in enzymes," Nature, Nature, vol. 558(7709), pages 324-328, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0183-2
    DOI: 10.1038/s41586-018-0183-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0183-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0183-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Stéphanie Galenkamp & Sarah Zernia & Yulan B. Oppen & Marco Noort & Andreas Milias Argeitis & Giovanni Maglia, 2024. "Allostery can convert binding free energies into concerted domain motions in enzymes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Federica Maschietto & Uriel N. Morzan & Florentina Tofoleanu & Aria Gheeraert & Apala Chaudhuri & Gregory W. Kyro & Peter Nekrasov & Bernard Brooks & J. Patrick Loria & Ivan Rivalta & Victor S. Batist, 2023. "Turning up the heat mimics allosteric signaling in imidazole-glycerol phosphate synthase," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Nicholas J Ose & Brandon M Butler & Avishek Kumar & I Can Kazan & Maxwell Sanderford & Sudhir Kumar & S Banu Ozkan, 2022. "Dynamic coupling of residues within proteins as a mechanistic foundation of many enigmatic pathogenic missense variants," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-22, April.
    4. Jia Zheng & Ning Guo & Yuxiang Huang & Xiang Guo & Andreas Wagner, 2024. "High temperature delays and low temperature accelerates evolution of a new protein phenotype," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0183-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.