IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v491y2012i7423d10.1038_nature11516.html
   My bibliography  Save this article

Genetic programs constructed from layered logic gates in single cells

Author

Listed:
  • Tae Seok Moon

    (Synthetic Biology Center, Massachusetts Institute of Technology
    Present address: Department of Energy, Environmental & Chemical Engineering, Washington University in St Louis, St Louis, Missouri 63130, USA.)

  • Chunbo Lou

    (Synthetic Biology Center, Massachusetts Institute of Technology)

  • Alvin Tamsir

    (Tetrad Graduate Program, University of California San Francisco)

  • Brynne C. Stanton

    (Synthetic Biology Center, Massachusetts Institute of Technology)

  • Christopher A. Voigt

    (Synthetic Biology Center, Massachusetts Institute of Technology)

Abstract

The creation of orthogonal ‘AND’ logic gates by combining DNA-binding proteins into complex, layered circuits opens the way to the design of programmable integrated circuits in synthetic biology.

Suggested Citation

  • Tae Seok Moon & Chunbo Lou & Alvin Tamsir & Brynne C. Stanton & Christopher A. Voigt, 2012. "Genetic programs constructed from layered logic gates in single cells," Nature, Nature, vol. 491(7423), pages 249-253, November.
  • Handle: RePEc:nat:nature:v:491:y:2012:i:7423:d:10.1038_nature11516
    DOI: 10.1038/nature11516
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11516
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Macia & Romilde Manzoni & Núria Conde & Arturo Urrios & Eulàlia de Nadal & Ricard Solé & Francesc Posas, 2016. "Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-24, February.
    2. Kanakov, Oleg & Chen, Shangbin & Zaikin, Alexey, 2024. "Learning by selective plasmid loss for intracellular synthetic classifiers," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    4. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    5. Judee A. Sharon & Chelsea Dasrath & Aiden Fujiwara & Alessandro Snyder & Mace Blank & Sam O’Brien & Lauren M. Aufdembrink & Aaron E. Engelhart & Katarzyna P. Adamala, 2023. "Trumpet is an operating system for simple and robust cell-free biocomputing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:491:y:2012:i:7423:d:10.1038_nature11516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.