IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00063-z.html
   My bibliography  Save this article

Insulated transcriptional elements enable precise design of genetic circuits

Author

Listed:
  • Yeqing Zong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haoqian M. Zhang

    (Peking University
    Peking University)

  • Cheng Lyu

    (Peking University)

  • Xiangyu Ji

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Junran Hou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xian Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qi Ouyang

    (Peking University
    Peking University
    Peking University)

  • Chunbo Lou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Rational engineering of biological systems is often complicated by the complex but unwanted interactions between cellular components at multiple levels. Here we address this issue at the level of prokaryotic transcription by insulating minimal promoters and operators to prevent their interaction and enable the biophysical modeling of synthetic transcription without free parameters. This approach allows genetic circuit design with extraordinary precision and diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding NOT-gate functions were designed from scratch with mean errors of 96% using our insulated transcription elements. Furthermore, four-node transcriptional networks with incoherent feed-forward loops that execute stripe-forming functions were obtained without any trial-and-error work. This insulation-based engineering strategy improves the resolution of genetic circuit technology and provides a simple approach for designing genetic circuits for systems and synthetic biology.

Suggested Citation

  • Yeqing Zong & Haoqian M. Zhang & Cheng Lyu & Xiangyu Ji & Junran Hou & Xian Guo & Qi Ouyang & Chunbo Lou, 2017. "Insulated transcriptional elements enable precise design of genetic circuits," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00063-z
    DOI: 10.1038/s41467-017-00063-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00063-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00063-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Li & Haonan Zhang & Dongyu Li & Ya-Jun Liu & Edward A. Bayer & Qiu Cui & Yingang Feng & Ping Zhu, 2023. "Structure of the transcription open complex of distinct σI factors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Chenrui Qin & Yanhui Xiang & Jie Liu & Ruilin Zhang & Ziming Liu & Tingting Li & Zhi Sun & Xiaoyi Ouyang & Yeqing Zong & Haoqian M. Zhang & Qi Ouyang & Long Qian & Chunbo Lou, 2023. "Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Judee A. Sharon & Chelsea Dasrath & Aiden Fujiwara & Alessandro Snyder & Mace Blank & Sam O’Brien & Lauren M. Aufdembrink & Aaron E. Engelhart & Katarzyna P. Adamala, 2023. "Trumpet is an operating system for simple and robust cell-free biocomputing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Bob Sluijs & Roel J. M. Maas & Ardjan J. Linden & Tom F. A. Greef & Wilhelm T. S. Huck, 2022. "A microfluidic optimal experimental design platform for forward design of cell-free genetic networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Alex J. H. Fedorec & Neythen J. Treloar & Ke Yan Wen & Linda Dekker & Qing Hsuan Ong & Gabija Jurkeviciute & Enbo Lyu & Jack W. Rutter & Kathleen J. Y. Zhang & Luca Rosa & Alexey Zaikin & Chris P. Bar, 2024. "Emergent digital bio-computation through spatial diffusion and engineered bacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00063-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.