IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v597y2021i7874d10.1038_s41586-021-03824-5.html
   My bibliography  Save this article

DAXX represents a new type of protein-folding enabler

Author

Listed:
  • Liangqian Huang

    (University of Pennsylvania
    University of Pennsylvania)

  • Trisha Agrawal

    (University of Pennsylvania
    University of Pennsylvania
    Wilson Sonsini Goodrich & Rosati LP)

  • Guixin Zhu

    (University of Pennsylvania
    University of Pennsylvania)

  • Sixiang Yu

    (University of Pennsylvania
    University of Pennsylvania)

  • Liming Tao

    (Broad Institute of MIT and Harvard)

  • JiaBei Lin

    (University of Pennsylvania)

  • Ronen Marmorstein

    (University of Pennsylvania
    University of Pennsylvania)

  • James Shorter

    (University of Pennsylvania)

  • Xiaolu Yang

    (University of Pennsylvania
    University of Pennsylvania)

Abstract

Protein quality control systems are crucial for cellular function and organismal health. At present, most known protein quality control systems are multicomponent machineries that operate via ATP-regulated interactions with non-native proteins to prevent aggregation and promote folding1, and few systems that can broadly enable protein folding by a different mechanism have been identified. Moreover, proteins that contain the extensively charged poly-Asp/Glu (polyD/E) region are common in eukaryotic proteomes2, but their biochemical activities remain undefined. Here we show that DAXX, a polyD/E protein that has been implicated in diverse cellular processes3–10, possesses several protein-folding activities. DAXX prevents aggregation, solubilizes pre-existing aggregates and unfolds misfolded species of model substrates and neurodegeneration-associated proteins. Notably, DAXX effectively prevents and reverses aggregation of its in vivo-validated client proteins, the tumour suppressor p53 and its principal antagonist MDM2. DAXX can also restore native conformation and function to tumour-associated, aggregation-prone p53 mutants, reducing their oncogenic properties. These DAXX activities are ATP-independent and instead rely on the polyD/E region. Other polyD/E proteins, including ANP32A and SET, can also function as stand-alone, ATP-independent molecular chaperones, disaggregases and unfoldases. Thus, polyD/E proteins probably constitute a multifunctional protein quality control system that operates via a distinctive mechanism.

Suggested Citation

  • Liangqian Huang & Trisha Agrawal & Guixin Zhu & Sixiang Yu & Liming Tao & JiaBei Lin & Ronen Marmorstein & James Shorter & Xiaolu Yang, 2021. "DAXX represents a new type of protein-folding enabler," Nature, Nature, vol. 597(7874), pages 132-137, September.
  • Handle: RePEc:nat:nature:v:597:y:2021:i:7874:d:10.1038_s41586-021-03824-5
    DOI: 10.1038/s41586-021-03824-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03824-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03824-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alice Mac Kain & Ghizlane Maarifi & Sophie-Marie Aicher & Nathalie Arhel & Artem Baidaliuk & Sandie Munier & Flora Donati & Thomas Vallet & Quang Dinh Tran & Alexandra Hardy & Maxime Chazal & François, 2022. "Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Nitish Gulve & Chenhe Su & Zhong Deng & Samantha S. Soldan & Olga Vladimirova & Jayamanna Wickramasinghe & Hongwu Zheng & Andrew V. Kossenkov & Paul. M. Lieberman, 2022. "DAXX-ATRX regulation of p53 chromatin binding and DNA damage response," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Benoît Arragain & Tim Krischuns & Martin Pelosse & Petra Drncova & Martin Blackledge & Nadia Naffakh & Stephen Cusack, 2024. "Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:597:y:2021:i:7874:d:10.1038_s41586-021-03824-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.