IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37180-x.html
   My bibliography  Save this article

Catalyzing next-generation Artificial Intelligence through NeuroAI

Author

Listed:
  • Anthony Zador

    (Cold Spring Harbor Laboratory)

  • Sean Escola

    (Columbia University)

  • Blake Richards

    (Mila
    McGill University
    McGill University
    McGill University)

  • Bence Ölveczky

    (Harvard University)

  • Yoshua Bengio

    (Mila)

  • Kwabena Boahen

    (Stanford University)

  • Matthew Botvinick

    (Google Deepmind)

  • Dmitri Chklovskii

    (Simons Foundation)

  • Anne Churchland

    (University of California Los Angeles)

  • Claudia Clopath

    (Imperial College London)

  • James DiCarlo

    (MIT)

  • Surya Ganguli

    (Stanford University)

  • Jeff Hawkins

    (Numenta)

  • Konrad Körding

    (University of Pennsylvania)

  • Alexei Koulakov

    (Cold Spring Harbor Laboratory)

  • Yann LeCun

    (Meta
    NYU)

  • Timothy Lillicrap

    (Google Deepmind)

  • Adam Marblestone

    (MIT)

  • Bruno Olshausen

    (University of California Berkeley)

  • Alexandre Pouget

    (University of Geneva)

  • Cristina Savin

    (NYU)

  • Terrence Sejnowski

    (Salk Institute for Biological Studies)

  • Eero Simoncelli

    (NYU)

  • Sara Solla

    (Northwestern University)

  • David Sussillo

    (Meta
    Stanford University)

  • Andreas S. Tolias

    (Baylor College of Medicine)

  • Doris Tsao

    (University of California Berkeley)

Abstract

Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core component of this is the embodied Turing test, which challenges AI animal models to interact with the sensorimotor world at skill levels akin to their living counterparts. The embodied Turing test shifts the focus from those capabilities like game playing and language that are especially well-developed or uniquely human to those capabilities – inherited from over 500 million years of evolution – that are shared with all animals. Building models that can pass the embodied Turing test will provide a roadmap for the next generation of AI.

Suggested Citation

  • Anthony Zador & Sean Escola & Blake Richards & Bence Ölveczky & Yoshua Bengio & Kwabena Boahen & Matthew Botvinick & Dmitri Chklovskii & Anne Churchland & Claudia Clopath & James DiCarlo & Surya Gangu, 2023. "Catalyzing next-generation Artificial Intelligence through NeuroAI," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37180-x
    DOI: 10.1038/s41467-023-37180-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37180-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37180-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Agrim Gupta & Silvio Savarese & Surya Ganguli & Li Fei-Fei, 2021. "Embodied intelligence via learning and evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Kwabena Boahen, 2022. "Dendrocentric learning for synthetic intelligence," Nature, Nature, vol. 612(7938), pages 43-50, December.
    3. Josh Merel & Matthew Botvinick & Greg Wayne, 2019. "Hierarchical motor control in mammals and machines," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    5. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    2. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    3. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    4. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    5. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    6. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    7. Mahmoud Mahfouz & Tucker Balch & Manuela Veloso & Danilo Mandic, 2021. "Learning to Classify and Imitate Trading Agents in Continuous Double Auction Markets," Papers 2110.01325, arXiv.org, revised Oct 2021.
    8. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    9. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    10. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    11. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    12. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    13. Mircea-Bogdan Radac & Anamaria-Ioana Borlea, 2021. "Virtual State Feedback Reference Tuning and Value Iteration Reinforcement Learning for Unknown Observable Systems Control," Energies, MDPI, vol. 14(4), pages 1-26, February.
    14. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    15. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.
    16. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    17. Chanjuan Liu & Jinmiao Cong & Tianhao Zhao & Enqiang Zhu, 2023. "Improving Agent Decision Payoffs via a New Framework of Opponent Modeling," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    18. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    19. Hamed Khalili, 2024. "Deep Learning Pricing of Processing Firms in Agricultural Markets," Agriculture, MDPI, vol. 14(5), pages 1-14, April.
    20. Guan, Xiaoshu & Xiang, Zhengliang & Bao, Yuequan & Li, Hui, 2022. "Structural dominant failure modes searching method based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37180-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.