IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13239-6.html
   My bibliography  Save this article

Hierarchical motor control in mammals and machines

Author

Listed:
  • Josh Merel

    (DeepMind)

  • Matthew Botvinick

    (DeepMind)

  • Greg Wayne

    (DeepMind)

Abstract

Advances in artificial intelligence are stimulating interest in neuroscience. However, most attention is given to discrete tasks with simple action spaces, such as board games and classic video games. Less discussed in neuroscience are parallel advances in “synthetic motor control”. While motor neuroscience has recently focused on optimization of single, simple movements, AI has progressed to the generation of rich, diverse motor behaviors across multiple tasks, at humanoid scale. It is becoming clear that specific, well-motivated hierarchical design elements repeatedly arise when engineering these flexible control systems. We review these core principles of hierarchical control, relate them to hierarchy in the nervous system, and highlight research themes that we anticipate will be critical in solving challenges at this disciplinary intersection.

Suggested Citation

  • Josh Merel & Matthew Botvinick & Greg Wayne, 2019. "Hierarchical motor control in mammals and machines," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13239-6
    DOI: 10.1038/s41467-019-13239-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13239-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13239-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mircea-Bogdan Radac & Anamaria-Ioana Borlea, 2021. "Virtual State Feedback Reference Tuning and Value Iteration Reinforcement Learning for Unknown Observable Systems Control," Energies, MDPI, vol. 14(4), pages 1-26, February.
    2. Anthony Zador & Sean Escola & Blake Richards & Bence Ölveczky & Yoshua Bengio & Kwabena Boahen & Matthew Botvinick & Dmitri Chklovskii & Anne Churchland & Claudia Clopath & James DiCarlo & Surya Gangu, 2023. "Catalyzing next-generation Artificial Intelligence through NeuroAI," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Mircea-Bogdan Radac & Timotei Lala, 2021. "Hierarchical Cognitive Control for Unknown Dynamic Systems Tracking," Mathematics, MDPI, vol. 9(21), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13239-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.