IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54026-2.html
   My bibliography  Save this article

Molecular catalyst coordinatively bonded to organic semiconductors for selective light-driven CO2 reduction in water

Author

Listed:
  • Jia-Wei Wang

    (and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)
    Barcelona Institute of Science and Technology (BIST))

  • Fengyi Zhao

    (Emory University)

  • Lucia Velasco

    (Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC))

  • Maxime Sauvan

    (Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC))

  • Dooshaye Moonshiram

    (Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC))

  • Martina Salati

    (Barcelona Institute of Science and Technology (BIST))

  • Zhi-Mei Luo

    (Barcelona Institute of Science and Technology (BIST))

  • Sheng He

    (Emory University)

  • Tao Jin

    (Emory University)

  • Yan-Fei Mu

    (Tianjin University of Technology)

  • Mehmed Z. Ertem

    (Brookhaven National Laboratory)

  • Tianquan Lian

    (Emory University)

  • Antoni Llobet

    (Barcelona Institute of Science and Technology (BIST)
    Universitat Autònoma de Barcelona)

Abstract

The selective photoreduction of CO2 in aqueous media based on earth-abundant elements only, is today a challenging topic. Here we present the anchoring of discrete molecular catalysts on organic polymeric semiconductors via covalent bonding, generating molecular hybrid materials with well-defined active sites for CO2 photoreduction, exclusively to CO in purely aqueous media. The molecular catalysts are based on aryl substituted Co phthalocyanines that can be coordinated by dangling pyridyl attached to a polymeric covalent triazine framework that acts as a light absorber. This generates a molecular hybrid material that efficiently and selectively achieves the photoreduction of CO2 to CO in KHCO3 aqueous buffer, giving high yields in the range of 22 mmol g−1 (458 μmol g−1 h−1) and turnover numbers above 550 in 48 h, with no deactivation and no detectable H2. The electron transfer mechanism for the activation of the catalyst is proposed based on the combined results from time-resolved fluorescence spectroscopy, in situ spectroscopies and quantum chemical calculations.

Suggested Citation

  • Jia-Wei Wang & Fengyi Zhao & Lucia Velasco & Maxime Sauvan & Dooshaye Moonshiram & Martina Salati & Zhi-Mei Luo & Sheng He & Tao Jin & Yan-Fei Mu & Mehmed Z. Ertem & Tianquan Lian & Antoni Llobet, 2024. "Molecular catalyst coordinatively bonded to organic semiconductors for selective light-driven CO2 reduction in water," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54026-2
    DOI: 10.1038/s41467-024-54026-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54026-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54026-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yueshen Wu & Zhan Jiang & Xu Lu & Yongye Liang & Hailiang Wang, 2019. "Domino electroreduction of CO2 to methanol on a molecular catalyst," Nature, Nature, vol. 575(7784), pages 639-642, November.
    3. Jia-Wei Wang & Long Jiang & Hai-Hua Huang & Zhiji Han & Gangfeng Ouyang, 2021. "Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Yingshuo Liu & Charles C. L. McCrory, 2019. "Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Yiou Wang & Anastasia Vogel & Michael Sachs & Reiner Sebastian Sprick & Liam Wilbraham & Savio J. A. Moniz & Robert Godin & Martijn A. Zwijnenburg & James R. Durrant & Andrew I. Cooper & Junwang Tang, 2019. "Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts," Nature Energy, Nature, vol. 4(9), pages 746-760, September.
    6. Jia-Wei Wang & Li-Zhen Qiao & Hao-Dong Nie & Hai-Hua Huang & Yi Li & Shuang Yao & Meng Liu & Zhi-Ming Zhang & Zhen-Hui Kang & Tong-Bu Lu, 2021. "Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjun Fan & Zhiyao Duan & Wei Liu & Rashid Mehmood & Jiating Qu & Yucheng Cao & Xiangyang Guo & Jun Zhong & Fuxiang Zhang, 2023. "Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shengyao Wang & Bo Jiang & Joel Henzie & Feiyan Xu & Chengyuan Liu & Xianguang Meng & Sirong Zou & Hui Song & Yang Pan & Hexing Li & Jiaguo Yu & Hao Chen & Jinhua Ye, 2023. "Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Liu, Enli & Lin, Xue & Hong, Yuanzhi & Yang, Lan & Luo, Bifu & Shi, Weilong & Shi, Junyou, 2021. "Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution," Renewable Energy, Elsevier, vol. 178(C), pages 757-765.
    4. Floriana Moruzzi & Weimin Zhang & Balaji Purushothaman & Soranyel Gonzalez-Carrero & Catherine M. Aitchison & Benjamin Willner & Fabien Ceugniet & Yuanbao Lin & Jan Kosco & Hu Chen & Junfu Tian & Mary, 2023. "Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xianlong Li & Zhiliang Wang & Alireza Sasani & Ardeshir Baktash & Kai Wang & Haijiao Lu & Jiakang You & Peng Chen & Ping Chen & Yifan Bao & Shujun Zhang & Gang Liu & Lianzhou Wang, 2024. "Oxygen vacancy induced defect dipoles in BiVO4 for photoelectrocatalytic partial oxidation of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Chih-Li Chang & Wei-Cheng Lin & Li-Yu Ting & Chin-Hsuan Shih & Shih-Yuan Chen & Tse-Fu Huang & Hiroyuki Tateno & Jayachandran Jayakumar & Wen-Yang Jao & Chen-Wei Tai & Che-Yi Chu & Chin-Wen Chen & Chi, 2022. "Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Yu Yang & Cheng Zhang & Chengyi Zhang & Yaohui Shi & Jun Li & Bernt Johannessen & Yongxiang Liang & Shuzhen Zhang & Qiang Song & Haowei Zhang & Jialei Huang & Jingwen Ke & Lei Zhang & Qingqing Song & , 2024. "Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Yunyang Qian & Yulan Han & Xiyuan Zhang & Ge Yang & Guozhen Zhang & Hai-Long Jiang, 2023. "Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Shujiao Yang & Kaihang Yue & Xiaohan Liu & Sisi Li & Haoquan Zheng & Ya Yan & Rui Cao & Wei Zhang, 2024. "Electrocatalytic water oxidation with manganese phosphates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Yuanding Fang & Youxing Liu & Haojie Huang & Jianzhe Sun & Jiaxing Hong & Fan Zhang & Xiaofang Wei & Wenqiang Gao & Mingchao Shao & Yunlong Guo & Qingxin Tang & Yunqi Liu, 2024. "Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jun Bu & Siyu Chang & Jinjin Li & Sanyin Yang & Wenxiu Ma & Zhenpeng Liu & Siying An & Yanan Wang & Zhen Li & Jian Zhang, 2023. "Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54026-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.