IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms7469.html
   My bibliography  Save this article

A molecular catalyst for water oxidation that binds to metal oxide surfaces

Author

Listed:
  • Stafford W. Sheehan

    (Yale University)

  • Julianne M. Thomsen

    (Yale University)

  • Ulrich Hintermair

    (Yale University
    Centre for Sustainable Chemical Technologies, University of Bath)

  • Robert H. Crabtree

    (Yale University)

  • Gary W. Brudvig

    (Yale University)

  • Charles A. Schmuttenmaer

    (Yale University)

Abstract

Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts.

Suggested Citation

  • Stafford W. Sheehan & Julianne M. Thomsen & Ulrich Hintermair & Robert H. Crabtree & Gary W. Brudvig & Charles A. Schmuttenmaer, 2015. "A molecular catalyst for water oxidation that binds to metal oxide surfaces," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7469
    DOI: 10.1038/ncomms7469
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms7469
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms7469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjun Fan & Zhiyao Duan & Wei Liu & Rashid Mehmood & Jiating Qu & Yucheng Cao & Xiangyang Guo & Jun Zhong & Fuxiang Zhang, 2023. "Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Zhirong Zhang & Chen Feng & Dongdi Wang & Shiming Zhou & Ruyang Wang & Sunpei Hu & Hongliang Li & Ming Zuo & Yuan Kong & Jun Bao & Jie Zeng, 2022. "Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms7469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.