IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36917-y.html
   My bibliography  Save this article

Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells

Author

Listed:
  • Zhenrong Jia

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qing Ma

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zeng Chen

    (Zhejiang University
    Zhejiang University)

  • Lei Meng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Nakul Jain

    (and Biology (IFM), Linköping University)

  • Indunil Angunawela

    (North Carolina State University)

  • Shucheng Qin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaolei Kong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiaojun Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang (Michael) Yang

    (Zhejiang University)

  • Haiming Zhu

    (Zhejiang University)

  • Harald Ade

    (North Carolina State University)

  • Feng Gao

    (and Biology (IFM), Linköping University)

  • Yongfang Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Soochow University)

Abstract

Reducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.17 eV and suppress the formation of triplet exciton in the BTPSV-4F-based devices. The organic solar cells with BTPSeV-4F as acceptor demonstrate a higher power conversion efficiency of 14.2% with a record high short-circuit current density of 30.1 mA cm−2 and low energy loss of 0.55 eV benefitted from the low non-radiative energy loss due to the suppression of triplet exciton formation. We also develop a high-performance medium bandgap acceptor O1-Br for front cells. By integrating the PM6:O1-Br based front cells with the PTB7-Th:BTPSeV-4F based rear cells, the tandem organic solar cell demonstrates a power conversion efficiency of 19%. The results indicate that the suppression of triplet excitons formation in the near-infrared-absorbing acceptor by molecular design is an effective way to improve the photovoltaic performance of the tandem organic solar cells.

Suggested Citation

  • Zhenrong Jia & Qing Ma & Zeng Chen & Lei Meng & Nakul Jain & Indunil Angunawela & Shucheng Qin & Xiaolei Kong & Xiaojun Li & Yang (Michael) Yang & Haiming Zhu & Harald Ade & Feng Gao & Yongfang Li, 2023. "Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36917-y
    DOI: 10.1038/s41467-023-36917-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36917-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36917-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Yan & Elham Rezasoltani & Mohammed Azzouzi & Flurin Eisner & Jenny Nelson, 2021. "Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Sarah Holliday & Raja Shahid Ashraf & Andrew Wadsworth & Derya Baran & Syeda Amber Yousaf & Christian B. Nielsen & Ching-Hong Tan & Stoichko D. Dimitrov & Zhengrong Shang & Nicola Gasparini & Maha Ala, 2016. "High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor," Nature Communications, Nature, vol. 7(1), pages 1-11, September.
    3. Alexander J. Gillett & Alberto Privitera & Rishat Dilmurat & Akchheta Karki & Deping Qian & Anton Pershin & Giacomo Londi & William K. Myers & Jaewon Lee & Jun Yuan & Seo-Jin Ko & Moritz K. Riede & Fe, 2021. "The role of charge recombination to triplet excitons in organic solar cells," Nature, Nature, vol. 597(7878), pages 666-671, September.
    4. Jingbi You & Letian Dou & Ken Yoshimura & Takehito Kato & Kenichiro Ohya & Tom Moriarty & Keith Emery & Chun-Chao Chen & Jing Gao & Gang Li & Yang Yang, 2013. "A polymer tandem solar cell with 10.6% power conversion efficiency," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    5. Johannes Benduhn & Kristofer Tvingstedt & Fortunato Piersimoni & Sascha Ullbrich & Yeli Fan & Manuel Tropiano & Kathryn A. McGarry & Olaf Zeika & Moritz K. Riede & Christopher J. Douglas & Stephen Bar, 2017. "Intrinsic non-radiative voltage losses in fullerene-based organic solar cells," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
    6. Zhenrong Jia & Shucheng Qin & Lei Meng & Qing Ma & Indunil Angunawela & Jinyuan Zhang & Xiaojun Li & Yakun He & Wenbin Lai & Ning Li & Harald Ade & Christoph J. Brabec & Yongfang Li, 2021. "High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Xiaozhou Che & Yongxi Li & Yue Qu & Stephen R. Forrest, 2018. "High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency," Nature Energy, Nature, vol. 3(5), pages 422-427, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artem Musiienko & Fengjiu Yang & Thomas William Gries & Chiara Frasca & Dennis Friedrich & Amran Al-Ashouri & Elifnaz Sağlamkaya & Felix Lang & Danny Kojda & Yi-Teng Huang & Valerio Stacchini & Robert, 2024. "Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Congqi Li & Guo Yao & Xiaobin Gu & Jikai Lv & Yuqi Hou & Qijie Lin & Na Yu & Misbah Sehar Abbasi & Xin Zhang & Jianqi Zhang & Zheng Tang & Qian Peng & Chunfeng Zhang & Yunhao Cai & Hui Huang, 2024. "Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Anna Jungbluth & Eunkyung Cho & Alberto Privitera & Kaila M. Yallum & Pascal Kaienburg & Andreas E. Lauritzen & Thomas Derrien & Sameer V. Kesava & Irfan Habib & Saied Md Pratik & Natalie Banerji & Je, 2024. "Limiting factors for charge generation in low-offset fullerene-based organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Hongbo Wu & Hao Lu & Yungui Li & Xin Zhou & Guanqing Zhou & Hailin Pan & Hanyu Wu & Xunda Feng & Feng Liu & Koen Vandewal & Wolfgang Tress & Zaifei Ma & Zhishan Bo & Zheng Tang, 2024. "Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Chong Wang & Bo Wu & Yang Li & Shen Zhou & Conghui Wu & Tianyang Dong & Ying Jiang & Zihui Hua & Yupeng Song & Wei Wen & Jianxin Tian & Yongqiang Chai & Rui Wen & Chunru Wang, 2024. "Aggregation promotes charge separation in fullerene-indacenodithiophene dyad," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Michael B. Price & Paul A. Hume & Aleksandra Ilina & Isabella Wagner & Ronnie R. Tamming & Karen E. Thorn & Wanting Jiao & Alison Goldingay & Patrick J. Conaghan & Girish Lakhwani & Nathaniel J. L. K., 2022. "Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Cao, Weiran & Li, Zhifeng & Yang, Yixing & Zheng, Ying & Yu, Weijie & Afzal, Rimza & Xue, Jiangeng, 2014. "“Solar tree”: Exploring new form factors of organic solar cells," Renewable Energy, Elsevier, vol. 72(C), pages 134-139.
    9. Jiehao Fu & Qianguang Yang & Peihao Huang & Sein Chung & Kilwon Cho & Zhipeng Kan & Heng Liu & Xinhui Lu & Yongwen Lang & Hanjian Lai & Feng He & Patrick W. K. Fong & Shirong Lu & Yang Yang & Zeyun Xi, 2024. "Rational molecular and device design enables organic solar cells approaching 20% efficiency," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Jinfeng Huang & Tianyi Chen & Le Mei & Mengting Wang & Yuxuan Zhu & Jiting Cui & Yanni Ouyang & Youwen Pan & Zhaozhao Bi & Wei Ma & Zaifei Ma & Haiming Zhu & Chunfeng Zhang & Xian-Kai Chen & Hongzheng, 2024. "On the role of asymmetric molecular geometry in high-performance organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    12. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    13. Costas Prouskas & Angelos Mourkas & Georgios Zois & Elefterios Lidorikis & Panos Patsalas, 2022. "A New Type of Architecture of Dye-Sensitized Solar Cells as an Alternative Pathway to Outdoor Photovoltaics," Energies, MDPI, vol. 15(7), pages 1-14, March.
    14. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    15. Yafei Wang & Zhong Zheng & Jianqiu Wang & Pengqing Bi & Zhihao Chen & Junzhen Ren & Cunbin An & Shaoqing Zhang & Jianhui Hou, 2023. "Organic laser power converter for efficient wireless micro power transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Liu, Xuxu & Chen, Huajie & Tan, Songting, 2015. "Overview of high-efficiency organic photovoltaic materials and devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1527-1538.
    17. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Natarajan Shanmugam & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Pitchandi Kasiviswanathan & Narottam Das, 2020. "Anti-Reflective Coating Materials: A Holistic Review from PV Perspective," Energies, MDPI, vol. 13(10), pages 1-93, May.
    19. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Wasiu Adebayo Hammed & Rosiyah Yahya & Abdulra'uf Lukman Bola & Habibun Nabi Muhammad Ekramul Mahmud, 2013. "Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells," Energies, MDPI, vol. 6(11), pages 1-22, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36917-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.