IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49432-5.html
   My bibliography  Save this article

Limiting factors for charge generation in low-offset fullerene-based organic solar cells

Author

Listed:
  • Anna Jungbluth

    (The University of Oxford)

  • Eunkyung Cho

    (The University of Arizona
    DGIST)

  • Alberto Privitera

    (The University of Oxford
    University of Florence)

  • Kaila M. Yallum

    (University of Bern)

  • Pascal Kaienburg

    (The University of Oxford)

  • Andreas E. Lauritzen

    (The University of Oxford)

  • Thomas Derrien

    (Diamond Light Source
    University of Exeter)

  • Sameer V. Kesava

    (The University of Oxford)

  • Irfan Habib

    (The University of Oxford)

  • Saied Md Pratik

    (The University of Arizona)

  • Natalie Banerji

    (University of Bern)

  • Jean-Luc Brédas

    (The University of Arizona)

  • Veaceslav Coropceanu

    (The University of Arizona)

  • Moritz Riede

    (The University of Oxford)

Abstract

Free charge generation after photoexcitation of donor or acceptor molecules in organic solar cells generally proceeds via (1) formation of charge transfer states and (2) their dissociation into charge separated states. Research often either focuses on the first component or the combined effect of both processes. Here, we provide evidence that charge transfer state dissociation rather than formation presents a major bottleneck for free charge generation in fullerene-based blends with low energetic offsets between singlet and charge transfer states. We investigate devices based on dilute donor content blends of (fluorinated) ZnPc:C60 and perform density functional theory calculations, device characterization, transient absorption spectroscopy and time-resolved electron paramagnetic resonance measurements. We draw a comprehensive picture of how energies and transitions between singlet, charge transfer, and charge separated states change upon ZnPc fluorination. We find that a significant reduction in photocurrent can be attributed to increasingly inefficient charge transfer state dissociation. With this, our work highlights potential reasons why low offset fullerene systems do not show the high performance of non-fullerene acceptors.

Suggested Citation

  • Anna Jungbluth & Eunkyung Cho & Alberto Privitera & Kaila M. Yallum & Pascal Kaienburg & Andreas E. Lauritzen & Thomas Derrien & Sameer V. Kesava & Irfan Habib & Saied Md Pratik & Natalie Banerji & Je, 2024. "Limiting factors for charge generation in low-offset fullerene-based organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49432-5
    DOI: 10.1038/s41467-024-49432-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49432-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49432-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander J. Gillett & Alberto Privitera & Rishat Dilmurat & Akchheta Karki & Deping Qian & Anton Pershin & Giacomo Londi & William K. Myers & Jaewon Lee & Jun Yuan & Seo-Jin Ko & Moritz K. Riede & Fe, 2021. "The role of charge recombination to triplet excitons in organic solar cells," Nature, Nature, vol. 597(7878), pages 666-671, September.
    2. Ivan Ramirez & Alberto Privitera & Safakath Karuthedath & Anna Jungbluth & Johannes Benduhn & Andreas Sperlich & Donato Spoltore & Koen Vandewal & Frédéric Laquai & Moritz Riede, 2021. "The role of spin in the degradation of organic photovoltaics," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Xian-Kai Chen & Veaceslav Coropceanu & Jean-Luc Brédas, 2018. "Assessing the nature of the charge-transfer electronic states in organic solar cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Johannes Benduhn & Kristofer Tvingstedt & Fortunato Piersimoni & Sascha Ullbrich & Yeli Fan & Manuel Tropiano & Kathryn A. McGarry & Olaf Zeika & Moritz K. Riede & Christopher J. Douglas & Stephen Bar, 2017. "Intrinsic non-radiative voltage losses in fullerene-based organic solar cells," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
    5. Martin Schwarze & Karl Sebastian Schellhammer & Katrin Ortstein & Johannes Benduhn & Christopher Gaul & Alexander Hinderhofer & Lorena Perdigón Toro & Reinhard Scholz & Jonas Kublitski & Steffen Rolan, 2019. "Impact of molecular quadrupole moments on the energy levels at organic heterojunctions," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Nicola Gasparini & Franco V. A. Camargo & Stefan Frühwald & Tetsuhiko Nagahara & Andrej Classen & Steffen Roland & Andrew Wadsworth & Vasilis G. Gregoriou & Christos L. Chochos & Dieter Neher & Michae, 2021. "Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Yufei Zhong & Martina Causa’ & Gareth John Moore & Philipp Krauspe & Bo Xiao & Florian Günther & Jonas Kublitski & Rishi Shivhare & Johannes Benduhn & Eyal BarOr & Subhrangsu Mukherjee & Kaila M. Yall, 2020. "Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Kazuaki Kawashima & Yasunari Tamai & Hideo Ohkita & Itaru Osaka & Kazuo Takimiya, 2015. "High-efficiency polymer solar cells with small photon energy loss," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongbo Wu & Hao Lu & Yungui Li & Xin Zhou & Guanqing Zhou & Hailin Pan & Hanyu Wu & Xunda Feng & Feng Liu & Koen Vandewal & Wolfgang Tress & Zaifei Ma & Zhishan Bo & Zheng Tang, 2024. "Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Michael B. Price & Paul A. Hume & Aleksandra Ilina & Isabella Wagner & Ronnie R. Tamming & Karen E. Thorn & Wanting Jiao & Alison Goldingay & Patrick J. Conaghan & Girish Lakhwani & Nathaniel J. L. K., 2022. "Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Zhenrong Jia & Qing Ma & Zeng Chen & Lei Meng & Nakul Jain & Indunil Angunawela & Shucheng Qin & Xiaolei Kong & Xiaojun Li & Yang (Michael) Yang & Haiming Zhu & Harald Ade & Feng Gao & Yongfang Li, 2023. "Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jing Wang & Xudong Jiang & Hongbo Wu & Guitao Feng & Hanyu Wu & Junyu Li & Yuanping Yi & Xunda Feng & Zaifei Ma & Weiwei Li & Koen Vandewal & Zheng Tang, 2021. "Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Chieh-Ming Hung & Sheng-Fu Wang & Wei-Chih Chao & Jian-Liang Li & Bo-Han Chen & Chih-Hsuan Lu & Kai-Yen Tu & Shang-Da Yang & Wen-Yi Hung & Yun Chi & Pi-Tai Chou, 2024. "High-performance near-infrared OLEDs maximized at 925 nm and 1022 nm through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Chong Wang & Bo Wu & Yang Li & Shen Zhou & Conghui Wu & Tianyang Dong & Ying Jiang & Zihui Hua & Yupeng Song & Wei Wen & Jianxin Tian & Yongqiang Chai & Rui Wen & Chunru Wang, 2024. "Aggregation promotes charge separation in fullerene-indacenodithiophene dyad," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Jiehao Fu & Qianguang Yang & Peihao Huang & Sein Chung & Kilwon Cho & Zhipeng Kan & Heng Liu & Xinhui Lu & Yongwen Lang & Hanjian Lai & Feng He & Patrick W. K. Fong & Shirong Lu & Yang Yang & Zeyun Xi, 2024. "Rational molecular and device design enables organic solar cells approaching 20% efficiency," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Jinfeng Huang & Tianyi Chen & Le Mei & Mengting Wang & Yuxuan Zhu & Jiting Cui & Yanni Ouyang & Youwen Pan & Zhaozhao Bi & Wei Ma & Zaifei Ma & Haiming Zhu & Chunfeng Zhang & Xian-Kai Chen & Hongzheng, 2024. "On the role of asymmetric molecular geometry in high-performance organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yafei Wang & Zhong Zheng & Jianqiu Wang & Pengqing Bi & Zhihao Chen & Junzhen Ren & Cunbin An & Shaoqing Zhang & Jianhui Hou, 2023. "Organic laser power converter for efficient wireless micro power transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Jonas Armleder & Tobias Neumann & Franz Symalla & Timo Strunk & Jorge Enrique Olivares Peña & Wolfgang Wenzel & Artem Fediai, 2023. "Controlling doping efficiency in organic semiconductors by tuning short-range overscreening," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Guilong Cai & Yuhao Li & Yuang Fu & Hua Yang & Le Mei & Zhaoyang Nie & Tengfei Li & Heng Liu & Yubin Ke & Xun-Li Wang & Jean-Luc Brédas & Man-Chung Tang & Xiankai Chen & Xiaowei Zhan & Xinhui Lu, 2024. "Deuteration-enhanced neutron contrasts to probe amorphous domain sizes in organic photovoltaic bulk heterojunction films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Yuang Fu & Tack Ho Lee & Yi-Chun Chin & Richard A. Pacalaj & Chiara Labanti & Song Yi Park & Yifan Dong & Hye Won Cho & Jin Young Kim & Daiki Minami & James R. Durrant & Ji-Seon Kim, 2023. "Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Boudia Mohamed El Amine & Yi Zhou & Hongying Li & Qiuwang Wang & Jun Xi & Cunlu Zhao, 2023. "Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency," Energies, MDPI, vol. 16(9), pages 1-12, May.
    19. Christopher Wöpke & Clemens Göhler & Maria Saladina & Xiaoyan Du & Li Nian & Christopher Greve & Chenhui Zhu & Kaila M. Yallum & Yvonne J. Hofstetter & David Becker-Koch & Ning Li & Thomas Heumüller &, 2022. "Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Kai Müller & Karl S. Schellhammer & Nico Gräßler & Bipasha Debnath & Fupin Liu & Yulia Krupskaya & Karl Leo & Martin Knupfer & Frank Ortmann, 2023. "Directed exciton transport highways in organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49432-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.