IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3302-d1429453.html
   My bibliography  Save this article

Simulation and Comparison of the Photovoltaic Performance of Conventional and Inverted Organic Solar Cells with SnO 2 as Electron Transport Layers

Author

Listed:
  • Mohamed El Amine Boudia

    (MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Qiuwang Wang

    (MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Cunlu Zhao

    (MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Extensive research on organic solar cells (OSCs) over the past decade has led to efficiency improvements exceeding 18%. Enhancing the efficacy of binary organic solar cells involves multiple factors, including the strategic selection of materials. The choice of donor and acceptor materials, which must exhibit complementary absorption spectra, is crucial. Additionally, optimizing the solar cell structure, such as adjusting the thickness of layers and incorporating hole-transporting layers, can further increase efficiency. In this study, we simulated three different novels within the use of the inorganic SnO 2 on the OSCs within this specific arrangement of structures using a drift-diffusion model: direct and inverted binary; direct ternary configurations of OSCs, specifically ITO/PEDOT: PSS/PM6:L8-BO/SnO 2 /Ag, ITO/SnO 2 /PM6:L8-BO/PEDOT: PSS/Ag; and FTO/PEDOT: PSS/PM6:D18:L8-BO/SnO 2 /Ag. These structures achieved power conversion efficiencies (PCE) of 18.34%, 18.37%, and 19.52%, respectively. The direct ternary device achieved an important V oc of 0.89 V and an FF of 82.3%, which is high in comparison with other simulated results in the literature. Our research focused on the role of SnO 2 as an inorganic electron transport layer in enhancing efficiency in all three configurations. We also evaluated the properties of these structures by simulating external quantum efficiency (EQE), which results in a broadened absorption spectrum from 380 nm to 900 nm for both binary and ternary devices. Furthermore, we measured the spectral distribution of absorbed photons, and photo-charge extraction by linearly increasing voltage (photo-CELIV) to assess charge extraction and generation rates as well as charge mobility. These measurements help establish a robust model for practical application.

Suggested Citation

  • Mohamed El Amine Boudia & Qiuwang Wang & Cunlu Zhao, 2024. "Simulation and Comparison of the Photovoltaic Performance of Conventional and Inverted Organic Solar Cells with SnO 2 as Electron Transport Layers," Energies, MDPI, vol. 17(13), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3302-:d:1429453
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander J. Gillett & Alberto Privitera & Rishat Dilmurat & Akchheta Karki & Deping Qian & Anton Pershin & Giacomo Londi & William K. Myers & Jaewon Lee & Jun Yuan & Seo-Jin Ko & Moritz K. Riede & Fe, 2021. "The role of charge recombination to triplet excitons in organic solar cells," Nature, Nature, vol. 597(7878), pages 666-671, September.
    2. Boudia Mohamed El Amine & Yi Zhou & Hongying Li & Qiuwang Wang & Jun Xi & Cunlu Zhao, 2023. "Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency," Energies, MDPI, vol. 16(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Chong Wang & Bo Wu & Yang Li & Shen Zhou & Conghui Wu & Tianyang Dong & Ying Jiang & Zihui Hua & Yupeng Song & Wei Wen & Jianxin Tian & Yongqiang Chai & Rui Wen & Chunru Wang, 2024. "Aggregation promotes charge separation in fullerene-indacenodithiophene dyad," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhen Wang & Yu Guo & Xianzhao Liu & Wenchao Shu & Guangchao Han & Kan Ding & Subhrangsu Mukherjee & Nan Zhang & Hin-Lap Yip & Yuanping Yi & Harald Ade & Philip C. Y. Chow, 2024. "The role of interfacial donor–acceptor percolation in efficient and stable all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jiehao Fu & Qianguang Yang & Peihao Huang & Sein Chung & Kilwon Cho & Zhipeng Kan & Heng Liu & Xinhui Lu & Yongwen Lang & Hanjian Lai & Feng He & Patrick W. K. Fong & Shirong Lu & Yang Yang & Zeyun Xi, 2024. "Rational molecular and device design enables organic solar cells approaching 20% efficiency," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Jinfeng Huang & Tianyi Chen & Le Mei & Mengting Wang & Yuxuan Zhu & Jiting Cui & Yanni Ouyang & Youwen Pan & Zhaozhao Bi & Wei Ma & Zaifei Ma & Haiming Zhu & Chunfeng Zhang & Xian-Kai Chen & Hongzheng, 2024. "On the role of asymmetric molecular geometry in high-performance organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Anna Jungbluth & Eunkyung Cho & Alberto Privitera & Kaila M. Yallum & Pascal Kaienburg & Andreas E. Lauritzen & Thomas Derrien & Sameer V. Kesava & Irfan Habib & Saied Md Pratik & Natalie Banerji & Je, 2024. "Limiting factors for charge generation in low-offset fullerene-based organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Agata Szlapa-Kula & Slawomir Kula, 2023. "Progress on Phenanthroimidazole Derivatives for Light-Emitting Electrochemical Cells: An Overview," Energies, MDPI, vol. 16(13), pages 1-20, July.
    8. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Guilong Cai & Yuhao Li & Yuang Fu & Hua Yang & Le Mei & Zhaoyang Nie & Tengfei Li & Heng Liu & Yubin Ke & Xun-Li Wang & Jean-Luc Brédas & Man-Chung Tang & Xiankai Chen & Xiaowei Zhan & Xinhui Lu, 2024. "Deuteration-enhanced neutron contrasts to probe amorphous domain sizes in organic photovoltaic bulk heterojunction films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Zhenrong Jia & Qing Ma & Zeng Chen & Lei Meng & Nakul Jain & Indunil Angunawela & Shucheng Qin & Xiaolei Kong & Xiaojun Li & Yang (Michael) Yang & Haiming Zhu & Harald Ade & Feng Gao & Yongfang Li, 2023. "Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Hongbo Wu & Hao Lu & Yungui Li & Xin Zhou & Guanqing Zhou & Hailin Pan & Hanyu Wu & Xunda Feng & Feng Liu & Koen Vandewal & Wolfgang Tress & Zaifei Ma & Zhishan Bo & Zheng Tang, 2024. "Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Kathleen Isabelle Moineau-Chane Ching, 2023. "Impact of Alkyl-Based Side Chains in Conjugated Materials for Bulk Heterojunction Organic Photovoltaic Cells—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    14. Boudia Mohamed El Amine & Yi Zhou & Hongying Li & Qiuwang Wang & Jun Xi & Cunlu Zhao, 2023. "Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency," Energies, MDPI, vol. 16(9), pages 1-12, May.
    15. Muhammad Azhar Ansari & Giovanni Ciampi & Sergio Sibilio, 2024. "Novel Materials for Semi-Transparent Organic Solar Cells," Energies, MDPI, vol. 17(2), pages 1-15, January.
    16. Zirui Gan & Liang Wang & Jinlong Cai & Chuanhang Guo & Chen Chen & Donghui Li & Yiwei Fu & Bojun Zhou & Yuandong Sun & Chenhao Liu & Jing Zhou & Dan Liu & Wei Li & Tao Wang, 2023. "Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Hongyuan Fu & Jia Yao & Ming Zhang & Lingwei Xue & Qiuju Zhou & Shangyu Li & Ming Lei & Lei Meng & Zhi-Guo Zhang & Yongfang Li, 2022. "Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Mohamed El Amine Boudia & Qiuwang Wang & Cunlu Zhao, 2024. "Optimization of the Active Layer Thickness for Inverted Ternary Organic Solar Cells Achieves 20% Efficiency with Simulation," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    20. Seiichiro Izawa & Masahiro Morimoto & Keisuke Fujimoto & Koki Banno & Yutaka Majima & Masaki Takahashi & Shigeki Naka & Masahiro Hiramoto, 2023. "Blue organic light-emitting diode with a turn-on voltage of 1.47 V," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3302-:d:1429453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.