IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i5d10.1038_s41560-018-0134-z.html
   My bibliography  Save this article

High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency

Author

Listed:
  • Xiaozhou Che

    (University of Michigan)

  • Yongxi Li

    (University of Michigan)

  • Yue Qu

    (University of Michigan)

  • Stephen R. Forrest

    (University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic–hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.

Suggested Citation

  • Xiaozhou Che & Yongxi Li & Yue Qu & Stephen R. Forrest, 2018. "High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency," Nature Energy, Nature, vol. 3(5), pages 422-427, May.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:5:d:10.1038_s41560-018-0134-z
    DOI: 10.1038/s41560-018-0134-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0134-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0134-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenrong Jia & Qing Ma & Zeng Chen & Lei Meng & Nakul Jain & Indunil Angunawela & Shucheng Qin & Xiaolei Kong & Xiaojun Li & Yang (Michael) Yang & Haiming Zhu & Harald Ade & Feng Gao & Yongfang Li, 2023. "Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:5:d:10.1038_s41560-018-0134-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.