IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v529y2016i7586d10.1038_nature17041.html
   My bibliography  Save this article

Protein misfolding in the endoplasmic reticulum as a conduit to human disease

Author

Listed:
  • Miao Wang

    (Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute)

  • Randal J. Kaufman

    (Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute)

Abstract

In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins — known as endoplasmic reticulum stress — and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.

Suggested Citation

  • Miao Wang & Randal J. Kaufman, 2016. "Protein misfolding in the endoplasmic reticulum as a conduit to human disease," Nature, Nature, vol. 529(7586), pages 326-335, January.
  • Handle: RePEc:nat:nature:v:529:y:2016:i:7586:d:10.1038_nature17041
    DOI: 10.1038/nature17041
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature17041
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature17041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Jie Chen & Jeffrey Knupp & Anoop Arunagiri & Leena Haataja & Peter Arvan & Billy Tsai, 2021. "PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Iqbal Dulloo & Peace Atakpa-Adaji & Yi-Chun Yeh & Clémence Levet & Sonia Muliyil & Fangfang Lu & Colin W. Taylor & Matthew Freeman, 2022. "iRhom pseudoproteases regulate ER stress-induced cell death through IP3 receptors and BCL-2," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Chaiheon Lee & Mingyu Park & W. C. Bhashini Wijesinghe & Seungjin Na & Chae Gyu Lee & Eunhye Hwang & Gwangsu Yoon & Jeong Kyeong Lee & Deok-Ho Roh & Yoon Hee Kwon & Jihyeon Yang & Sebastian A. Hughes , 2024. "Oxidative photocatalysis on membranes triggers non-canonical pyroptosis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Eun-Ji Park & Hyun-Soo Kim & Do-Hyoung Lee & Su-Min Kim & Joon-Sup Yoon & Ji-Min Lee & Se Jin Im & Ho Lee & Min-Woo Lee & Chang-Woo Lee, 2023. "Ssu72 phosphatase is essential for thermogenic adaptation by regulating cytosolic translation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Li Qi jun, 2018. "TG could Modulate FPN1 in MES 23.5 Cells by Hepcidin," International Journal of Sciences, Office ijSciences, vol. 7(09), pages 52-55, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:529:y:2016:i:7586:d:10.1038_nature17041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.