IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42583-x.html
   My bibliography  Save this article

High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy

Author

Listed:
  • Marti Checa

    (Oak Ridge National Laboratory)

  • Addis S. Fuhr

    (Oak Ridge National Laboratory)

  • Changhyo Sun

    (Sungkyunkwan University)

  • Rama Vasudevan

    (Oak Ridge National Laboratory)

  • Maxim Ziatdinov

    (Oak Ridge National Laboratory
    Oak Ridge National Laboratory)

  • Ilia Ivanov

    (Oak Ridge National Laboratory)

  • Seok Joon Yun

    (Oak Ridge National Laboratory
    University of Ulsan)

  • Kai Xiao

    (Oak Ridge National Laboratory)

  • Alp Sehirlioglu

    (Case Western Reserve University)

  • Yunseok Kim

    (Sungkyunkwan University)

  • Pankaj Sharma

    (Flinders University
    UNSW Sydney)

  • Kyle P. Kelley

    (Oak Ridge National Laboratory)

  • Neus Domingo

    (Oak Ridge National Laboratory)

  • Stephen Jesse

    (Oak Ridge National Laboratory)

  • Liam Collins

    (Oak Ridge National Laboratory)

Abstract

Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO3/SrTiO3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO2. Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems.

Suggested Citation

  • Marti Checa & Addis S. Fuhr & Changhyo Sun & Rama Vasudevan & Maxim Ziatdinov & Ilia Ivanov & Seok Joon Yun & Kai Xiao & Alp Sehirlioglu & Yunseok Kim & Pankaj Sharma & Kyle P. Kelley & Neus Domingo &, 2023. "High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42583-x
    DOI: 10.1038/s41467-023-42583-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42583-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42583-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuchao Yang & Peng Gao & Siddharth Gaba & Ting Chang & Xiaoqing Pan & Wei Lu, 2012. "Observation of conducting filament growth in nanoscale resistive memories," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. A. Ohtomo & H. Y. Hwang, 2004. "A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface," Nature, Nature, vol. 427(6973), pages 423-426, January.
    3. Yan Tang & Chithra Asokan & Mingjie Xu & George W. Graham & Xiaoqing Pan & Phillip Christopher & Jun Li & Philippe Sautet, 2019. "Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. W. Lee & K. Eom & T. R. Paudel & B. Wang & H. Lu & H. X. Huyan & S. Lindemann & S. Ryu & H. Lee & T. H. Kim & Y. Yuan & J. A. Zorn & S. Lei & W. P. Gao & T. Tybell & V. Gopalan & X. Q. Pan & A. Gru, 2021. "In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Cong-Xiao Wang & Hao-Xin Liu & Hao Gu & Jin-Ying Li & Xiao-Meng Lai & Xin-Pu Fu & Wei-Wei Wang & Qiang Fu & Feng Ryan Wang & Chao Ma & Chun-Jiang Jia, 2024. "Hydroxylated TiO2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO2 hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. Felix Küster & Sascha Brinker & Samir Lounis & Stuart S. P. Parkin & Paolo Sessi, 2021. "Long range and highly tunable interaction between local spins coupled to a superconducting condensate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Yuhao Hong & Long Wei & Qinghua Zhang & Zhixiong Deng & Xiaxia Liao & Yangbo Zhou & Lei Wang & Tongrui Li & Junhua Liu & Wen Xiao & Shilin Hu & Lingfei Wang & Lin Li & Mark Huijben & Yulin Gan & Kai C, 2023. "A broad-spectrum gas sensor based on correlated two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Cody A. Dennett & Narayan Poudel & Paul J. Simmonds & Ashutosh Tiwari & David H. Hurley & Krzysztof Gofryk, 2022. "Towards actinide heterostructure synthesis and science," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    7. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Sara Varotto & Annika Johansson & Börge Göbel & Luis M. Vicente-Arche & Srijani Mallik & Julien Bréhin & Raphaël Salazar & François Bertran & Patrick Le Fèvre & Nicolas Bergeal & Julien Rault & Ingrid, 2022. "Direct visualization of Rashba-split bands and spin/orbital-charge interconversion at KTaO3 interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Pooja Sindhu & K. S. Ananthram & Anil Jain & Kartick Tarafder & Nirmalya Ballav, 2022. "Charge-transfer interface of insulating metal-organic frameworks with metallic conduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Jinsol Seo & Hyungwoo Lee & Kitae Eom & Jinho Byun & Taewon Min & Jaekwang Lee & Kyoungjun Lee & Chang-Beom Eom & Sang Ho Oh, 2024. "Feld-induced modulation of two-dimensional electron gas at LaAlO3/SrTiO3 interface by polar distortion of LaAlO3," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Zheng Chen & Zhangyun Liu & Xin Xu, 2023. "Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO2 single-atom catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Yixi Zhou & Adrien Waelchli & Margherita Boselli & Iris Crassee & Adrien Bercher & Weiwei Luo & Jiahua Duan & J.L.M. Mechelen & Dirk Marel & Jérémie Teyssier & Carl Willem Rischau & Lukas Korosec & St, 2023. "Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Shingo Kaneta-Takada & Miho Kitamura & Shoma Arai & Takuma Arai & Ryo Okano & Le Duc Anh & Tatsuro Endo & Koji Horiba & Hiroshi Kumigashira & Masaki Kobayashi & Munetoshi Seki & Hitoshi Tabata & Masaa, 2022. "Giant spin-to-charge conversion at an all-epitaxial single-crystal-oxide Rashba interface with a strongly correlated metal interlayer," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Lina Zhang & Shaolong Wan & Congcong Du & Qiang Wan & Hien Pham & Jiafei Zhao & Xingyu Ding & Diye Wei & Wei Zhao & Jiwei Li & Yanping Zheng & Hui Xie & Hua Zhang & Mingshu Chen & Kelvin H. L. Zhang &, 2024. "Generating active metal/oxide reverse interfaces through coordinated migration of single atoms," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Kitae Eom & Bongwook Chung & Sehoon Oh & Hua Zhou & Jinsol Seo & Sang Ho Oh & Jinhyuk Jang & Si-Young Choi & Minsu Choi & Ilwan Seo & Yun Sang Lee & Youngmin Kim & Hyungwoo Lee & Jung-Woo Lee & Kyoung, 2024. "Surface triggered stabilization of metastable charge-ordered phase in SrTiO3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Xiaoyang Chen & Tianlun Yu & Yuan Liu & Yanqiu Sun & Minyinan Lei & Nan Guo & Yu Fan & Xingtian Sun & Meng Zhang & Fatima Alarab & Vladimir N. Strocov & Yilin Wang & Tao Zhou & Xinyi Liu & Fanjin Lu &, 2024. "Orientation-dependent electronic structure in interfacial superconductors LaAlO3/KTaO3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Xuexi Yan & Yixiao Jiang & Qianqian Jin & Tingting Yao & Weizhen Wang & Ang Tao & Chunyang Gao & Xiang Li & Chunlin Chen & Hengqiang Ye & Xiu-Liang Ma, 2023. "Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    19. Enyang Men & Deyang Li & Haiyang Zhang & Jingxin Chen & Zhihan Qiao & Long Wei & Zhaosheng Wang & Chuanying Xi & Dongsheng Song & Yuhan Li & Hyoungjeen Jeen & Kai Chen & Hong Zhu & Lin Hao, 2024. "An atomically controlled insulator-to-metal transition in iridate/manganite heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Bin Shao & Zhi-Qiang Wang & Xue-Qing Gong & Honglai Liu & Feng Qian & P. Hu & Jun Hu, 2023. "Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42583-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.