IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48922-w.html
   My bibliography  Save this article

Small molecule induced STING degradation facilitated by the HECT ligase HERC4

Author

Listed:
  • Merve Mutlu

    (Novartis BioMedical Research)

  • Isabel Schmidt

    (Novartis BioMedical Research)

  • Andrew I. Morrison

    (Novartis BioMedical Research
    Amsterdam institute for Infection and Immunity)

  • Benedikt Goretzki

    (Novartis BioMedical Research)

  • Felix Freuler

    (Novartis BioMedical Research)

  • Damien Begue

    (Novartis BioMedical Research)

  • Oliver Simic

    (Novartis BioMedical Research)

  • Nicolas Pythoud

    (Novartis BioMedical Research)

  • Erik Ahrne

    (Novartis BioMedical Research)

  • Sandra Kapps

    (Novartis BioMedical Research)

  • Susan Roest

    (Novartis BioMedical Research)

  • Debora Bonenfant

    (Novartis BioMedical Research
    Monte Rosa Therapeutics)

  • Delphine Jeanpierre

    (Novartis BioMedical Research)

  • Thi-Thanh-Thao Tran

    (Novartis BioMedical Research)

  • Rob Maher

    (Novartis BioMedical Research)

  • Shaojian An

    (Novartis BioMedical Research)

  • Amandine Rietsch

    (Novartis BioMedical Research)

  • Florian Nigsch

    (Novartis BioMedical Research)

  • Andreas Hofmann

    (Novartis BioMedical Research)

  • John Reece-Hoyes

    (Novartis BioMedical Research
    Vector Biology)

  • Christian N. Parker

    (Novartis BioMedical Research)

  • Danilo Guerini

    (Novartis BioMedical Research)

Abstract

Stimulator of interferon genes (STING) is a central component of the cytosolic nucleic acids sensing pathway and as such master regulator of the type I interferon response. Due to its critical role in physiology and its’ involvement in a variety of diseases, STING has been a focus for drug discovery. Targeted protein degradation (TPD) has emerged as a promising pharmacology for targeting previously considered undruggable proteins by hijacking the cellular ubiquitin proteasome system (UPS) with small molecules. Here, we identify AK59 as a STING degrader leveraging HERC4, a HECT-domain E3 ligase. Additionally, our data reveals that AK59 is effective on the common pathological STING mutations, suggesting a potential clinical application of this mechanism. Thus, these findings introduce HERC4 to the fields of TPD and of compound-induced degradation of STING, suggesting potential therapeutic applications.

Suggested Citation

  • Merve Mutlu & Isabel Schmidt & Andrew I. Morrison & Benedikt Goretzki & Felix Freuler & Damien Begue & Oliver Simic & Nicolas Pythoud & Erik Ahrne & Sandra Kapps & Susan Roest & Debora Bonenfant & Del, 2024. "Small molecule induced STING degradation facilitated by the HECT ligase HERC4," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48922-w
    DOI: 10.1038/s41467-024-48922-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48922-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48922-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simone M. Haag & Muhammet F. Gulen & Luc Reymond & Antoine Gibelin & Laurence Abrami & Alexiane Decout & Michael Heymann & F. Gisou van der Goot & Gerardo Turcatti & Rayk Behrendt & Andrea Ablasser, 2018. "Targeting STING with covalent small-molecule inhibitors," Nature, Nature, vol. 559(7713), pages 269-273, July.
    2. Defen Lu & Guijun Shang & Jie Li & Yong Lu & Xiao-chen Bai & Xuewu Zhang, 2022. "Activation of STING by targeting a pocket in the transmembrane domain," Nature, Nature, vol. 604(7906), pages 557-562, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengrui Feng & Sajid A. Marhon & Dustin J. Sokolowski & Alister D’Costa & Fraser Soares & Parinaz Mehdipour & Charles Ishak & Helen Loo Yau & Ilias Ettayebi & Parasvi S. Patel & Raymond Chen & Jiming, 2024. "Inhibiting EZH2 targets atypical teratoid rhabdoid tumor by triggering viral mimicry via both RNA and DNA sensing pathways," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Zhibin Lin & Peijun Yang & Yufeng Hu & Hao Xu & Juanli Duan & Fei He & Kefeng Dou & Lin Wang, 2023. "RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Mutian Jia & Li Chai & Jie Wang & Mengge Wang & Danhui Qin & Hui Song & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2024. "S-nitrosothiol homeostasis maintained by ADH5 facilitates STING-dependent host defense against pathogens," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Chiara Scopa & Samantha M. Barnada & Maria E. Cicardi & Mo Singer & Davide Trotti & Marco Trizzino, 2023. "JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Mutian Jia & Yuanyuan Wang & Jie Wang & Danhui Qin & Mengge Wang & Li Chai & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2023. "Myristic acid as a checkpoint to regulate STING-dependent autophagy and interferon responses by promoting N-myristoylation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Maritza Puray-Chavez & Jenna E. Eschbach & Ming Xia & Kyle M. LaPak & Qianzi Zhou & Ria Jasuja & Jiehong Pan & Jian Xu & Zixiang Zhou & Shawn Mohammed & Qibo Wang & Dana Q. Lawson & Sanja Djokic & Gao, 2024. "A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Hervé Técher & Diyavarshini Gopaul & Jonathan Heuzé & Nail Bouzalmad & Baptiste Leray & Audrey Vernet & Clément Mettling & Jérôme Moreaux & Philippe Pasero & Yea-Lih Lin, 2024. "MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Sarah Rösing & Fabian Ullrich & Susann Meisterfeld & Franziska Schmidt & Laura Mlitzko & Marijana Croon & Ryan G Nattrass & Nadia Eberl & Julia Mahlberg & Martin Schlee & Anja Wieland & Philipp Simon , 2024. "Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Si-Jia Sun & Xiao-Dong Jiao & Zhi-Gang Chen & Qi Cao & Jia-Hui Zhu & Qi-Rui Shen & Yi Liu & Zhen Zhang & Fang-Fang Xu & Yu Shi & Jie Tong & Shen-Xi Ouyang & Jiang-Tao Fu & Yi Zhao & Jun Ren & Dong-Jie, 2024. "Gasdermin-E-mediated pyroptosis drives immune checkpoint inhibitor-associated myocarditis via cGAS-STING activation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    15. Kaiyuan Wang & Yang Li & Xia Wang & Zhijun Zhang & Liping Cao & Xiaoyuan Fan & Bin Wan & Fengxiang Liu & Xuanbo Zhang & Zhonggui He & Yingtang Zhou & Dong Wang & Jin Sun & Xiaoyuan Chen, 2023. "Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Joana Sá-Pessoa & Sara López-Montesino & Kornelia Przybyszewska & Isabel Rodríguez-Escudero & Helina Marshall & Adelia Ova & Gunnar N. Schroeder & Peter Barabas & María Molina & Tim Curtis & Víctor J., 2023. "A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Silu Deng & Wei He & Ai-Yu Gong & Min Li & Yang Wang & Zijie Xia & Xin-Tiang Zhang & Andrew S. Huang Pacheco & Ankur Naqib & Mark Jenkins & Patrick C. Swanson & Kristen M. Drescher & Juliane K. Straus, 2023. "Cryptosporidium uses CSpV1 to activate host type I interferon and attenuate antiparasitic defenses," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Xiaolan Liu & Xufeng Cen & Ronghai Wu & Ziyan Chen & Yanqi Xie & Fengqi Wang & Bing Shan & Linghui Zeng & Jichun Zhou & Bojian Xie & Yangjun Cai & Jinyan Huang & Yingjiqiong Liang & Youqian Wu & Chao , 2023. "ARIH1 activates STING-mediated T-cell activation and sensitizes tumors to immune checkpoint blockade," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48922-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.