S-nitrosothiol homeostasis maintained by ADH5 facilitates STING-dependent host defense against pathogens
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-46212-z
Download full text from publisher
References listed on IDEAS
- Gabriele G. Schiattarella & Francisco Altamirano & Dan Tong & Kristin M. French & Elisa Villalobos & Soo Young Kim & Xiang Luo & Nan Jiang & Herman I. May & Zhao V. Wang & Theodore M. Hill & Pradeep P, 2019. "Nitrosative stress drives heart failure with preserved ejection fraction," Nature, Nature, vol. 568(7752), pages 351-356, April.
- Limin Liu & Alfred Hausladen & Ming Zeng & Loretta Que & Joseph Heitman & Jonathan S. Stamler, 2001. "A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans," Nature, Nature, vol. 410(6827), pages 490-494, March.
- Simone M. Haag & Muhammet F. Gulen & Luc Reymond & Antoine Gibelin & Laurence Abrami & Alexiane Decout & Michael Heymann & F. Gisou van der Goot & Gerardo Turcatti & Rayk Behrendt & Andrea Ablasser, 2018. "Targeting STING with covalent small-molecule inhibitors," Nature, Nature, vol. 559(7713), pages 269-273, July.
- Hiroki Ishikawa & Glen N. Barber, 2008. "Erratum: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling," Nature, Nature, vol. 456(7219), pages 274-274, November.
- Hiroki Ishikawa & Glen N. Barber, 2008. "STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling," Nature, Nature, vol. 455(7213), pages 674-678, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Mutian Jia & Yuanyuan Wang & Jie Wang & Danhui Qin & Mengge Wang & Li Chai & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2023. "Myristic acid as a checkpoint to regulate STING-dependent autophagy and interferon responses by promoting N-myristoylation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Jing Liu & Xia Bu & Chen Chu & Xiaoming Dai & John M. Asara & Piotr Sicinski & Gordon J. Freeman & Wenyi Wei, 2023. "PRMT1 mediated methylation of cGAS suppresses anti-tumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Wei-Wei Luo & Zhen Tong & Pan Cao & Fu-Bing Wang & Ying Liu & Zhou-Qin Zheng & Su-Yun Wang & Shu Li & Yan-Yi Wang, 2022. "Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Tian-Chen Xiong & Ming-Cong Wei & Fang-Xu Li & Miao Shi & Hu Gan & Zhen Tang & Hong-Peng Dong & Tianzi Liuyu & Pu Gao & Bo Zhong & Zhi-Dong Zhang & Dandan Lin, 2022. "The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Alex J. Pollock & Shivam A. Zaver & Joshua J. Woodward, 2020. "A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
- Maximilian Hirschenberger & Alice Lepelley & Ulrich Rupp & Susanne Klute & Victoria Hunszinger & Lennart Koepke & Veronika Merold & Blaise Didry-Barca & Fanny Wondany & Tim Bergner & Tatiana Moreau & , 2023. "ARF1 prevents aberrant type I interferon induction by regulating STING activation and recycling," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Rana Falahat & Anders Berglund & Patricio Perez-Villarroel & Ryan M. Putney & Imene Hamaidi & Sungjune Kim & Shari Pilon-Thomas & Glen N. Barber & James J. Mulé, 2023. "Epigenetic state determines the in vivo efficacy of STING agonist therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Xudong Chen & Min Xie & Sensen Zhang & Marta Monguió-Tortajada & Jian Yin & Chang Liu & Youqi Zhang & Maeva Delacrétaz & Mingyue Song & Yixue Wang & Lin Dong & Qiang Ding & Boda Zhou & Xiaolin Tian & , 2023. "Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Shirin Fatma & Arpita Chakravarti & Xuankun Zeng & Raven H. Huang, 2021. "Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Xiaoquan Wang & Youqiao Wang & Anqi Cao & Qinhong Luo & Daoyuan Chen & Weiqi Zhao & Jun Xu & Qinkai Li & Xianzhang Bu & Junmin Quan, 2023. "Development of cyclopeptide inhibitors of cGAS targeting protein-DNA interaction and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Ugur Uslu & Lijun Sun & Sofia Castelli & Amanda V. Finck & Charles-Antoine Assenmacher & Regina M. Young & Zhijian J. Chen & Carl H. June, 2024. "The STING agonist IMSA101 enhances chimeric antigen receptor T cell function by inducing IL-18 secretion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Yongfang Lin & Jing Yang & Qili Yang & Sha Zeng & Jiayu Zhang & Yuanxiang Zhu & Yuxin Tong & Lin Li & Weiqi Tan & Dahua Chen & Qinmiao Sun, 2023. "PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Yaling Dou & Rui Chen & Siyao Liu & Yi-Tsang Lee & Ji Jing & Xiaoxuan Liu & Yuepeng Ke & Rui Wang & Yubin Zhou & Yun Huang, 2023. "Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Merve Mutlu & Isabel Schmidt & Andrew I. Morrison & Benedikt Goretzki & Felix Freuler & Damien Begue & Oliver Simic & Nicolas Pythoud & Erik Ahrne & Sandra Kapps & Susan Roest & Debora Bonenfant & Del, 2024. "Small molecule induced STING degradation facilitated by the HECT ligase HERC4," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Zhibin Lin & Peijun Yang & Yufeng Hu & Hao Xu & Juanli Duan & Fei He & Kefeng Dou & Lin Wang, 2023. "RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
- D. Procházková & D. Haisel & D. Pavlíková, 2014. "Nitric oxide biosynthesis in plants - the short overview," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(3), pages 129-134.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46212-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.