Surface engineering of inorganic solid-state electrolytes via interlayers strategy for developing long-cycling quasi-all-solid-state lithium batteries
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-36401-7
Download full text from publisher
References listed on IDEAS
- Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Yuming Chen & Ziqiang Wang & Xiaoyan Li & Xiahui Yao & Chao Wang & Yutao Li & Weijiang Xue & Daiwei Yu & So Yeon Kim & Fei Yang & Akihiro Kushima & Guoge Zhang & Haitao Huang & Nan Wu & Yiu-Wing Mai &, 2020. "Li metal deposition and stripping in a solid-state battery via Coble creep," Nature, Nature, vol. 578(7794), pages 251-255, February.
- Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kwang Hee Kim & Myung-Jin Lee & Minje Ryu & Tae-Kyung Liu & Jung Hwan Lee & Changhoon Jung & Ju-Sik Kim & Jong Hyeok Park, 2024. "Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dong-Su Ko & Sewon Kim & Sangjun Lee & Gabin Yoon & Daeho Kim & ChaeHo Shin & Dongmin Kim & Jaewoo Lee & Soohwan Sul & Dong-Jin Yun & Changhoon Jung, 2025. "Mechanism of stable lithium plating and stripping in a metal-interlayer-inserted anode-less solid-state lithium metal battery," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Haowen Gao & Xin Ai & Hongchun Wang & Wangqin Li & Ping Wei & Yong Cheng & Siwei Gui & Hui Yang & Yong Yang & Ming-Sheng Wang, 2022. "Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Kwang Hee Kim & Myung-Jin Lee & Minje Ryu & Tae-Kyung Liu & Jung Hwan Lee & Changhoon Jung & Ju-Sik Kim & Jong Hyeok Park, 2024. "Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Matthew Burton & Sudarshan Narayanan & Ben Jagger & Lorenz F. Olbrich & Shobhan Dhir & Masafumi Shibata & Michael J. Lain & Robert Astbury & Nicholas Butcher & Mark Copley & Toshikazu Kotaka & Yuichi , 2025. "Techno-economic assessment of thin lithium metal anodes for solid-state batteries," Nature Energy, Nature, vol. 10(1), pages 135-147, January.
- Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Sung-Kyun Jung & Hyeokjo Gwon & Hyungsub Kim & Gabin Yoon & Dongki Shin & Jihyun Hong & Changhoon Jung & Ju-Sik Kim, 2022. "Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Manoj K. Jangid & Tae H. Cho & Tao Ma & Daniel W. Liao & Hwangsun Kim & Younggyu Kim & Miaofang Chi & Neil P. Dasgupta, 2024. "Eliminating chemo-mechanical degradation of lithium solid-state battery cathodes during >4.5 V cycling using amorphous Nb2O5 coatings," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Yoon, Da Hye & Park, Yong Joon, 2022. "Effects of lithium bis(oxalato)borate-derived surface coating layers on the performances of high-Ni cathodes for all-solid-state batteries," Applied Energy, Elsevier, vol. 326(C).
- Wonmi Lee & Juho Lee & Taegyun Yu & Hyeong-Jong Kim & Min Kyung Kim & Sungbin Jang & Juhee Kim & Yu-Jin Han & Sunghun Choi & Sinho Choi & Tae-Hee Kim & Sang-Hoon Park & Wooyoung Jin & Gyujin Song & Do, 2024. "Advanced parametrization for the production of high-energy solid-state lithium pouch cells containing polymer electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Qian Wu & Mandi Fang & Shizhe Jiao & Siyuan Li & Shichao Zhang & Zeyu Shen & Shulan Mao & Jiale Mao & Jiahui Zhang & Yuanzhong Tan & Kang Shen & Jiaxing Lv & Wei Hu & Yi He & Yingying Lu, 2023. "Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Menghao Yang & Yunsheng Liu & Yifei Mo, 2023. "Lithium crystallization at solid interfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36401-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.