IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49295-w.html
   My bibliography  Save this article

Single-gold etching at the hypercarbon atom of C-centred hexagold(I) clusters protected by chiral N-heterocyclic carbenes

Author

Listed:
  • Xiao-Li Pei

    (The University of Tokyo
    Tokyo University of Science)

  • Pei Zhao

    (Myodaiji)

  • Hitoshi Ube

    (The University of Tokyo)

  • Zhen Lei

    (The University of Tokyo
    Fuzhou University)

  • Masahiro Ehara

    (Myodaiji)

  • Mitsuhiko Shionoya

    (The University of Tokyo
    Tokyo University of Science)

Abstract

Chemical etching of nano-sized metal clusters at the atomic level has a high potential for creating metal number-specific structures and functions that are difficult to achieve with bottom-up synthesis methods. In particular, precisely etching metal atoms one by one from nonmetallic element-centred metal clusters and elucidating the relationship between their well-defined structures, and chemical and physical properties will facilitate future materials design for metal clusters. Here we report the single-gold etching at a hypercarbon centre in gold(I) clusters. Specifically, C-centred hexagold(I) clusters protected by chiral N-heterocyclic carbenes are etched with bisphosphine to yield C-centred pentagold(I) (CAuI5) clusters. The CAuI5 clusters exhibit an unusually large bathochromic shift in luminescence, which is reproduced theoretically. The etching mechanism is experimentally and theoretically suggested to be a tandem dissociation-association-elimination pathway. Furthermore, the vacant site of the central carbon of the CAuI5 cluster can accommodate AuCl, allowing for post-functionalisation of the C-centred gold(I) clusters.

Suggested Citation

  • Xiao-Li Pei & Pei Zhao & Hitoshi Ube & Zhen Lei & Masahiro Ehara & Mitsuhiko Shionoya, 2024. "Single-gold etching at the hypercarbon atom of C-centred hexagold(I) clusters protected by chiral N-heterocyclic carbenes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49295-w
    DOI: 10.1038/s41467-024-49295-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49295-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49295-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiaofeng Yao & Yan Feng & Victor Fung & Yong Yu & De-en Jiang & Jun Yang & Jianping Xie, 2017. "Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    2. Zhen Lei & Mizuki Endo & Hitoshi Ube & Takafumi Shiraogawa & Pei Zhao & Koichi Nagata & Xiao-Li Pei & Tomoya Eguchi & Toshiaki Kamachi & Masahiro Ehara & Takeaki Ozawa & Mitsuhiko Shionoya, 2022. "N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and organelle-selective translocation in cells," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yitao Cao & Tongyu Liu & Tiankai Chen & Bihan Zhang & De-en Jiang & Jianping Xie, 2021. "Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Yitao Cao & Victor Fung & Qiaofeng Yao & Tiankai Chen & Shuangquan Zang & De-en Jiang & Jianping Xie, 2020. "Control of single-ligand chemistry on thiolated Au25 nanoclusters," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng Jia & Yi-Xin Li & Xiao-Hong Ma & Miao-Miao Zhang & Xi-Yan Dong & Jie Ai & Shuang-Quan Zang, 2023. "Atomically precise ultrasmall copper cluster for room-temperature highly regioselective dehydrogenative coupling," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Teng Jia & Jie Ai & Xiaoguang Li & Miao-Miao Zhang & Yue Hua & Yi-Xin Li & Cai-Fang Sun & Feng Liu & Ren-Wu Huang & Zheng Wang & Shuang-Quan Zang, 2024. "Atomically precise copper clusters with dual sites for highly chemoselective and efficient hydroboration," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Zhi Wang & Yan-Jie Zhu & Bao-Liang Han & Yi-Zhi Li & Chen-Ho Tung & Di Sun, 2023. "A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xiao-Hong Ma & Jing Li & Peng Luo & Jia-Hua Hu & Zhen Han & Xi-Yan Dong & Guohua Xie & Shuang-Quan Zang, 2023. "Carbene-stabilized enantiopure heterometallic clusters featuring EQE of 20.8% in circularly-polarized OLED," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yuan Zhong & Jiangwei Zhang & Tingting Li & Wenwu Xu & Qiaofeng Yao & Min Lu & Xue Bai & Zhennan Wu & Jianping Xie & Yu Zhang, 2023. "Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Claudia Pigliacelli & Angela Acocella & Isabel Díez & Luca Moretti & Valentina Dichiarante & Nicola Demitri & Hua Jiang & Margherita Maiuri & Robin H. A. Ras & Francesca Baldelli Bombelli & Giulio Cer, 2022. "High-resolution crystal structure of a 20 kDa superfluorinated gold nanocluster," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Zhi Wang & Yan-Jie Zhu & Ying-Zhou Li & Gui-Lin Zhuang & Ke-Peng Song & Zhi-Yong Gao & Jian-Min Dou & Mohamedally Kurmoo & Chen-Ho Tung & Di Sun, 2022. "Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Runnan Guan & Jing Huang & Jinpeng Xin & Muqing Chen & Pingwu Du & Qunxiang Li & Yuan-Zhi Tan & Shangfeng Yang & Su-Yuan Xie, 2024. "A stabilization rule for metal carbido cluster bearing μ3-carbido single-atom-ligand encapsulated in carbon cage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49295-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.