IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00371-4.html
   My bibliography  Save this article

In situ atomic-scale imaging of the metal/oxide interfacial transformation

Author

Listed:
  • Lianfeng Zou

    (State University of New York at Binghamton)

  • Jonathan Li

    (State University of New York)

  • Dmitri Zakharov

    (Center for Functional Nanomaterials, Brookhaven National Laboratory)

  • Eric A. Stach

    (Center for Functional Nanomaterials, Brookhaven National Laboratory)

  • Guangwen Zhou

    (State University of New York at Binghamton)

Abstract

Directly probing structure dynamics at metal/oxide interfaces has been a major challenge due to their buried nature. Using environmental transmission electron microscopy, here we report observations of the in-place formation of Cu2O/Cu interfaces via the oxidation of Cu, and subsequently probe the atomic mechanisms by which interfacial transformation and grain rotation occur at the interfaces during reduction in an H2 gas environment. The Cu2O→Cu transformation is observed to occur initially along the Cu2O/Cu interface in a layer-by-layer manner. The accumulation of oxygen vacancies at the Cu2O/Cu interface drives the collapse of the Cu2O lattice near the interface region, which results in a tilted Cu2O/Cu interface with concomitant Cu2O island rotation. These results provide unprecedented microscopic detail regarding the redox reactions of supported oxides, which differs fundamentally from the reduction of bulk or isolated oxides that requires the formation of new interfaces between the parent oxide and the reduced phase.

Suggested Citation

  • Lianfeng Zou & Jonathan Li & Dmitri Zakharov & Eric A. Stach & Guangwen Zhou, 2017. "In situ atomic-scale imaging of the metal/oxide interfacial transformation," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00371-4
    DOI: 10.1038/s41467-017-00371-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00371-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00371-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Li & Li Yang & Jijo Christudasjustus & Nicole R. Overman & Brian D. Wirth & Maria L. Sushko & Pauline Simonnin & Daniel K. Schreiber & Fei Gao & Chongmin Wang, 2024. "Selective atomic sieving across metal/oxide interface for super-oxidation resistance," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Wenjun Cui & Weixiao Lin & Weichao Lu & Chengshan Liu & Zhixiao Gao & Hao Ma & Wen Zhao & Gustaaf Tendeloo & Wenyu Zhao & Qingjie Zhang & Xiahan Sang, 2023. "Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00371-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.